《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (12): 77-90.doi: 10.6040/j.issn.1671-9352.4.2022.9449
摘要:
基于q-正交模糊集构建冲突分析模型,用q-正交模糊数表示对象关于议题的态度,并使用综合联盟距离衡量对象关于议题的联盟度,进一步通过分析对象和议题的3种联盟层次得到冲突的内因。其次,基于模糊粗糙自信息给出可行策略集的分类能力评价,由此构建寻找最佳可行策略的后向算法。模糊粗糙自信息所需的分类信息由对象的3种联盟层次充当,进一步便可定义联盟层次的上下近似,从而得到可行策略集的分类能力评价。最后,通过中东冲突的例子演示了模型及算法的可行性,并分析了阈值对输出的最佳可行策略集的影响。
中图分类号:
1 |
PAWLAK Z . On conflicts[J]. International Journal of Man-Machine Studies, 1984, 21 (2): 127- 134.
doi: 10.1016/S0020-7373(84)80062-0 |
2 |
DEJA R . Conflict analysis[J]. International Journal of Intelligent Systems, 2002, 17 (2): 235- 253.
doi: 10.1002/int.10019 |
3 | PAWLAK Z . An inquiry into anatomy of conflicts[J]. Information Sciences, 1998, 109 (1/2/3/4): 65- 78. |
4 |
PAWLAK Z . Some remarks on conflict analysis[J]. European Journal of Operational Research, 2005, 166 (3): 649- 654.
doi: 10.1016/j.ejor.2003.09.038 |
5 |
PAWLAK Z , SKOWRON A . Rough sets and Boolean reasoning[J]. Information Sciences, 2007, 177 (1): 41- 73.
doi: 10.1016/j.ins.2006.06.007 |
6 |
LI X , WANG X , LANG G , et al. Conflict analysis based on three-way decision for triangular fuzzy information systems[J]. International Journal of Approximate Reasoning, 2021, 132, 88- 106.
doi: 10.1016/j.ijar.2020.12.004 |
7 |
LIU Y , LIN Y . Intuitionistic fuzzy rough set model based on conflict distance and applications[J]. Applied Soft Computing, 2015, 31, 266- 273.
doi: 10.1016/j.asoc.2015.02.045 |
8 | LANG G , MIAO D , FUJITA H . Three-way group conflict analysis based on Pythagorean fuzzy set theory[J]. IEEE Transactions on Fuzzy Systems, 2019, 28 (3): 447- 461. |
9 |
TONG S , SUN B , CHU X , et al. Trust recommendation mechanism-based consensus model for Pawlak conflict analysis decision making[J]. International Journal of Approximate Reasoning, 2021, 135, 91- 109.
doi: 10.1016/j.ijar.2021.05.001 |
10 |
YI H , ZHANG H , LI X , et al. Three-way conflict analysis based on hesitant fuzzy information systems[J]. International Journal of Approximate Reasoning, 2021, 139, 12- 27.
doi: 10.1016/j.ijar.2021.09.002 |
11 | LANG G , MIAO D , CAI M . Three-way decision approaches to conflict analysis using decision-theoretic rough set theory[J]. Information Sciences, 2017, 406, 185- 207. |
12 |
SUN B , MA W . Rough approximation of a preference relation by multi-decision dominance for a multi-agent conflict analysisproblem[J]. Information Sciences, 2015, 315, 39- 53.
doi: 10.1016/j.ins.2015.03.061 |
13 |
YAO Y . Three-way conflict analysis: reformulations and extensions of the Pawlak model[J]. Knowledge-Based Systems, 2019, 180, 26- 37.
doi: 10.1016/j.knosys.2019.05.016 |
14 |
SUN B , MA W , ZHAO H . Rough set-based conflict analysis model and method over two universes[J]. Information Sciences, 2016, 372, 111- 125.
doi: 10.1016/j.ins.2016.08.030 |
15 |
LANG G , LUO J , YAO Y . Three-way conflict analysis: a unification of models based on rough sets and formal concept analysis[J]. Knowledge-Based Systems, 2020, 194, 105556.
doi: 10.1016/j.knosys.2020.105556 |
16 | ATANASSOV K . Intuitionistic fuzzy sets[J]. International Journal Bioautomation, 2016, 20, 1- 6. |
17 | ATANASSOV K T . A second type of intuitionistic fuzzy sets[J]. Busefal, 1993, 56, 66- 70. |
18 | YAGER R R . Generalized orthopair fuzzy sets[J]. IEEE Transactions on Fuzzy Systems, 2016, 25 (5): 1222- 1230. |
19 |
GARG H , CHEN S M . Multiattribute group decision making based on neutrality aggregation operators of q-rung orthopair fuzzy sets[J]. Information Sciences, 2020, 517, 427- 447.
doi: 10.1016/j.ins.2019.11.035 |
20 |
XING Y , ZHANG R , ZHOU Z , et al. Some q-rung orthopair fuzzy point weighted aggregation operators for multi-attribute decision making[J]. Soft Computing, 2019, 23 (22): 11627- 11649.
doi: 10.1007/s00500-018-03712-7 |
21 | LIU P , CHEN S M , WANG P . Multiple-attribute group decision-making based on q-rung orthopair fuzzy power maclaurin symmetric mean operators[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 50 (10): 3741- 3756. |
22 |
LIU P , LIU W . Multiple-attribute group decision-making based on power Bonferroni operators of linguistic q-rung orthopair fuzzy numbers[J]. International Journal of Intelligent Systems, 2019, 34 (4): 652- 689.
doi: 10.1002/int.22071 |
23 | LIU P , WANG P . Multiple-attribute decision-making based on Archimedean Bonferroni operators of q-rung orthopair fuzzy numbers[J]. IEEE Transactions on Fuzzy Systems, 2018, 27 (5): 834- 848. |
24 |
LIU Z , WANG S , LIU P . Multiple attribute group decision making based on q-rung orthopair fuzzy Heronian mean operators[J]. International Journal of Intelligent Systems, 2018, 33 (12): 2341- 2363.
doi: 10.1002/int.22032 |
25 |
WEI G , GAO H , WEI Y . Some q-rung orthopair fuzzy Heronian mean operators in multiple attribute decision making[J]. International Journal of Intelligent Systems, 2018, 33 (7): 1426- 1458.
doi: 10.1002/int.21985 |
26 | XU L , LIU Y , LIU H . Some improved q-rung orthopair fuzzy aggregation operators and their applications to multiattribute group decision-making[J]. Mathematical Problems in Engineering, 2019, 2019, 1- 18. |
27 |
YANG W , PANG Y . New q-rung orthopair fuzzy partitioned Bonferroni mean operators and their application in multiple attribute decision making[J]. International Journal of Intelligent Systems, 2019, 34 (3): 439- 476.
doi: 10.1002/int.22060 |
28 |
WANG P , WANG J , WEI G , et al. Similarity measures of q-rung orthopair fuzzy sets based on cosine function and their applications[J]. Mathematics, 2019, 7 (4): 340.
doi: 10.3390/math7040340 |
29 |
ZHANG Z , CHEN S M . Group decision making with incomplete q-rung orthopair fuzzy preference relations[J]. Information Sciences, 2021, 553, 376- 396.
doi: 10.1016/j.ins.2020.10.015 |
30 |
ALI M I . Another view on q-rung orthopair fuzzy sets[J]. International Journal of Intelligent Systems, 2018, 33 (11): 2139- 2153.
doi: 10.1002/int.22007 |
31 |
DU W S . Minkowski-type distance measures for generalized orthopair fuzzy sets[J]. International Journal of Intelligent Systems, 2018, 33 (4): 802- 817.
doi: 10.1002/int.21968 |
32 | ALI Z , MAHMOOD T . Maclaurin symmetric mean operators and their applications in the environment of complex q-rung orthopair fuzzy sets[J]. Computational and Applied Mathematics, 2020, 39 (3): 1- 27. |
33 |
PENG X , LIU L . Information measures for q-rung orthopair fuzzy sets[J]. International Journal of Intelligent Systems, 2019, 34 (8): 1795- 1834.
doi: 10.1002/int.22115 |
34 | WEI G , WEI C , WANG J , et al. Some q-rung orthopair fuzzy maclaurin symmetric mean operators and their applications to potential evaluation of emerging technology commercialization[J]. International Journal of Intelligent Systems, 2019, 34 (1): 50- 81. |
35 | KAMACI H, PETCHIMUTHU S. Some similarity measures for interval-valued bipolar q-rung orthopair fuzzy sets and their application to supplier evaluation and selection in supply chain management[J/OL]. Environment, Development and Sustainability, 2022. https://doi.org/10.1007/s10668-022-02130-y. |
36 | WANG C , HUANG Y , DING W , et al. Attribute reduction with fuzzy rough self-information measures[J]. Information Sciences, 2021, 549, 68- 86. |
37 | ZADEH L A . Fuzzy sets[J]. Information and Control, 1965, 8 (3): 338- 353. |
38 | DUBOIS D , PRADE H . Rough fuzzy sets and fuzzy rough sets[J]. International Journal of General System, 1990, 17 (2/3): 191- 209. |
39 | GRECO S, MATARAZZO B, SLOWINSKI R. Fuzzy similarity relation as a basis for rough approximations[C]//International Conference on Rough Sets and Current Trends in Computing. Berlin: Springer, 1998: 283-289. |
40 | DU J , LIU S , LIU Y , et al. A novel approach to three-way conflict analysis and resolution with Pythagorean fuzzy information[J]. Information Sciences, 2022, 584, 65- 88. |
[1] | 王茜,张贤勇. 不完备邻域加权多粒度决策理论粗糙集及三支决策[J]. 《山东大学学报(理学版)》, 2023, 58(9): 94-104. |
[2] | 胡玉文,徐久成,张倩倩. 决策演化集的李雅普诺夫稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(7): 52-59. |
[3] | 胡成祥,张莉,黄晓玲,王汇彬. 面向属性变化的动态邻域粗糙集知识更新方法[J]. 《山东大学学报(理学版)》, 2023, 58(7): 37-51. |
[4] | 吴凡,孔祥智. 基于模糊信息系统的模糊β-覆盖粗糙集模型[J]. 《山东大学学报(理学版)》, 2023, 58(5): 10-16. |
[5] | 时俊鹏,张燕兰. 面向对象删除的局部邻域粗糙集动态更新算法[J]. 《山东大学学报(理学版)》, 2023, 58(5): 17-25. |
[6] | 刘长顺,刘炎,宋晶晶,徐泰华. 基于论域离散度的属性约简算法[J]. 《山东大学学报(理学版)》, 2023, 58(5): 26-35. |
[7] | 金雷,冯涛,张少谱. 基于概率多值信息系统的冲突分析和决策分析[J]. 《山东大学学报(理学版)》, 2023, 58(12): 91-107. |
[8] | 钱进,汤大伟,洪承鑫. 多粒度层次序贯三支决策模型研究[J]. 《山东大学学报(理学版)》, 2022, 57(9): 33-45. |
[9] | 胡玉文,徐久成,徐天贺. 决策演化集的伯努利移位[J]. 《山东大学学报(理学版)》, 2022, 57(8): 13-20. |
[10] | 张晓雨,李同军. 不协调区间值决策系统中的α-上、下近似约简[J]. 《山东大学学报(理学版)》, 2022, 57(5): 20-27. |
[11] | 施极,索中英. 基于区间数层次分析法的损失函数确定方法[J]. 《山东大学学报(理学版)》, 2022, 57(5): 28-37. |
[12] | 孙文鑫,刘玉锋. 基于参数粒的广义多粒度粗糙集[J]. 《山东大学学报(理学版)》, 2022, 57(5): 11-19. |
[13] | 薛占熬,李永祥,姚守倩,荆萌萌. 基于Bayesian直觉模糊粗糙集的数据分类方法[J]. 《山东大学学报(理学版)》, 2022, 57(5): 1-10. |
[14] | 孙林,梁娜,徐久成. 基于自适应邻域互信息与谱聚类的特征选择[J]. 《山东大学学报(理学版)》, 2022, 57(12): 13-24. |
[15] | 张娇娇,张少谱,冯涛. 毕达哥拉斯模糊系统的优势关系及其约简[J]. 《山东大学学报(理学版)》, 2021, 56(3): 96-110. |
|