《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (1): 1-10, 45.doi: 10.6040/j.issn.1671-9352.0.2023.512
• 特邀综述 • 下一篇
摘要:
非线性期望是山东大学彭实戈院士开辟的原创性研究方向之一, 对各个领域的科学研究越来越重要, 而大数据和人工智能的兴起, 为非线性期望创新理论与应用研究提供了更强劲的动力。最近, 山东大学“非线性期望”团队基于多臂老虎机的策略博弈过程开创了“策略极限理论”, 是非线性概率理论与强化学习交叉的重大突破性科研成果, 变革了传统统计方法研究范式。本文结合徐宗本院士提出的人工智能的10个重大数理基础问题, 国家自然科学基金委员会发布的2022年度重大研究计划项目中关于可解释、可通用的人工智能方法的申报指南, 以及科技部发布的数学和应用研究重点专项2021、2022年度项目中“数据科学与人工智能的数学基础”理论研究的申报指南, 采用“策略”这一概念探寻和揭示人工智能本质和规律, 尝试启发、促动人工智能技术变革的激发源和理论依据。不同于传统的大数定律和中心极限定理在独立同分布假设下开展统计学习的研究, 策略极限理论打破了数据可交换这一局限, 在更大的概率空间中探求最优分布, 并提出获得最优分布的最优策略路径, 与之对应的统计学习过程被命名为策略统计学习, 为复杂机器学习的可解释和可信赖的统计方法研究提供理论支撑。本文介绍策略极限理论的应用包括但不限于: (1)大规模数据的策略抽样; (2)数据流的在线学习; (3)强化学习的中心极限定理; (4)数据的差分隐私保护; (5)联邦学习的策略融合; (6)迁移学习和元学习的信息重构; (7)知识推理与数据驱动的融合。
中图分类号:
1 | 徐宗本. 用好大数据须有大智慧: 准确把握、科学应对大数据带来的机遇和挑战[N]. 人民日报, 2016-03-15 (07). |
XU Zongben. To make good use of big data requires great wisdom: accurately grasp and scientifically respond to the opportunities and challenges brought by big data[N]. People's Daily, 2016-03-15 (07). | |
2 | 徐宗本. 把握新一代信息技术的聚焦点: 数字化、网络化、智能化[N]. 人民日报, 2019-03-01 (09). |
XU Zongben. Grasp the focus of the new generation of information technology: digitalization, networking, and intelligence[N]. People's Daily, 2019-03-01 (09). | |
3 | 徐宗本, 唐年胜, 程学旗. 数据科学: 它的内涵、方法、意义与发展[M]. 北京: 科学出版社, 2021. |
XU Zongben , TANG Niansheng , CHENG Xueqi . Data science: its connotation, method, significance and development[M]. Beijing: Science Publishing, 2021. | |
4 | 徐宗本. 人工智能的10个重大数理基础问题[J]. 中国科学: 信息科学, 2021, 51, 1967- 1978. |
XU Zongben . Ten fundamental problems for artificial intelligence: mathematical and physical aspects[J]. Science China: Information Sciences, 2021, 51, 1967- 1978. | |
5 | PENG S . Nonlinear expectations and stochastic calculus under uncertainty: with robust CLT and G-Brownian motion[M]. Berlin: Springer Nature, 2019. |
6 |
CHEN Z , EPSTEIN L G . A central limit theorem for sets of probability measures[J]. Stochastic Processes and Their Applications, 2022, 152, 424- 451.
doi: 10.1016/j.spa.2022.07.003 |
7 | CHEN Z, FENG S, ZHANG G. Strategy-driven limit theorems associated bandit problems[EB/OL]. 2022-04-09[2023-12-05]. https://arxiv.org/abs/2204.04442. |
8 |
CHEN Z , EPSTEIN L , ZHANG G . A central limit theorem, loss aversion and multi-armed bandits[J]. Journal of Economic Theory, 2023, 209, 105645.
doi: 10.1016/j.jet.2023.105645 |
9 |
CHEN Z , YAN X , ZHANG G . Strategic two-sample test via two-armed bandit process[J]. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2023, 85, 1271- 1298.
doi: 10.1093/jrsssb/qkad061 |
10 |
CHEN Z , FENG X , LIU S , et al. Optimal distributions of rewards for a two-armed slot machine[J]. Neurocomputing, 2023, 518, 401- 407.
doi: 10.1016/j.neucom.2022.11.019 |
11 | ZHAO T , CHENG G , LIU H . A partially linear framework for massive heterogeneous data[J]. Annals of Statistics, 2016, 44 (4): 1400- 1437. |
12 |
KLEINER A , TALWALKAR A , SARKAR P , et al. A scalable bootstrap for massive data[J]. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2014, 76 (4): 795- 816.
doi: 10.1111/rssb.12050 |
13 | AI Mingyao , YU Jun , ZHANG Huiming , et al. Optimal subsampling algorithms for big data regressions[J]. Statistica Sinica, Forthcoming, 2021, 31, 749- 772. |
14 | ETIKAN I , ALKASSIM R , ABUBAKAR S . Comparision of snowball sampling and sequential sampling technique[J]. Biometrics and Biostatistics International Journal, 2016, 3 (1): 55. |
15 |
LIN N , XI R . Aggregated estimating equation estimation[J]. Statistics and its Interface, 2011, 4, 73- 83.
doi: 10.4310/SII.2011.v4.n1.a8 |
16 |
SCHIFANO E D , WU J , WANG C , et al. Online updating of statistical inference in the big data setting[J]. Technometrics, 2016, 58 (3): 393- 403.
doi: 10.1080/00401706.2016.1142900 |
17 | CHEN X , LEE J D , TONG X T , et al. Statistical inference for model parameters in stochastic gradient descent[J]. The Annals of Statistics, 2020, 48, 251- 273. |
18 | ZHU W , CHEN X , WU B . Online covariance matrix estimation in stochastic gradient descent[J]. Journal of the American Statistical Association, 2021, 118 (154): 393- 404. |
19 |
LUO L , SONG P X K . Renewable estimation and incremental inference in generalized linear models with streaming data sets[J]. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2020, 82, 69- 97.
doi: 10.1111/rssb.12352 |
20 | CUI W, JI X, KONG L, et al. Opposite online learning via sequentially integrated stochastic gradient descent estimators[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Washington: AAAI Press, 2023, 37(6): 7270-7278. |
21 | SUTTON R S, BARTO A G. Reinforcement learning: an introduction[M]. [S. l. ]: MIT Press, 2018. |
22 | WILLIAMS R J . Simple statistical gradient-following algorithms for connectionist reinforcement learning[J]. Machine Learning, 1992, 8 (3): 229- 256. |
23 |
LAI T L , ROBBINS H . Asymptotically efficient adaptive allocation rules[J]. Advances in Applied Mathematics, 1985, 6 (1): 4- 22.
doi: 10.1016/0196-8858(85)90002-8 |
24 | DWORK C. Differential privacy: a survey of results[C]//International Conference on Theory and Applications of Models of Computation. Heidelberg: Springer, 2008: 1-19. |
25 | 方滨兴. 释放数据使用权将成为未来技术发展取向[N/OL]. 中国新闻网, 2022-05-19[2023-12-05], https://news.sciencenet.cn/htmlnews/2022/5/479297.shtm. |
26 |
WASSERMAN L , ZHOU S . A statistical framework for differential privacy[J]. Journal of the American Statistical Association, 2010, 105 (489): 375- 389.
doi: 10.1198/jasa.2009.tm08651 |
27 | DUCHI J C , JORDAN M I , WAINWRIGHT M J . Privacy aware learning[J]. Journal of the ACM, 2014, 61 (6): 1- 57. |
28 |
LI T , SAHU A K , TALWALKAR A , et al. Federated learning: challenges, methods, and future directions[J]. IEEE Signal Processing Magazine, 2020, 37 (3): 50- 60.
doi: 10.1109/MSP.2020.2975749 |
29 | TAN C, SUN F, KONG T, et al. A survey on deep transfer learning[C]//International Conference on Artificial Neural Networks. Cham: Springer, 2018: 270-279. |
30 | FINN C, XU, K, LEVINE S. Probabilistic model-agnostic meta-learning[C]//NIPS'18: Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montréal: Curran Associates Inc., 2018: 9537-9548. |
31 |
VILALTA R , DRISSI Y . A perspective view and survey of meta-learning[J]. Artificial Intelligence Review, 2002, 18 (2): 77- 95.
doi: 10.1023/A:1019956318069 |
32 | 张钹. 人工智能进入后深度学习时代[J]. 智能科学与技术学报, 2019, 1 (1): 4- 6. |
ZHANG Ba . Artificial intelligence is entering the post deep-learning era[J]. Chinese Journal of Intelligent Science and Technology, 2019, 1 (1): 4- 6. | |
33 | 张钹, 朱军, 苏航. 迈向第三代人工智能[J]. 中国科学: 信息科学, 2020, 50, 1281- 1302. |
ZHANG Ba , ZHU Jun , SU Hang . Toward the third generation of artificial intelligence[J]. Science China: Information Sciences, 2020, 50, 1281- 1302. |
[1] | 康海燕,邓婕. 区块链数据隐私保护研究综述[J]. 《山东大学学报(理学版)》, 2021, 56(5): 92-110. |
[2] | 余传明,冯博琳,田鑫,安璐. 基于深度表示学习的多语言文本情感分析[J]. 山东大学学报(理学版), 2018, 53(3): 13-23. |
[3] | 孙世昶,林鸿飞,孟佳娜,刘洪波. 面向序列迁移学习的似然比模型选择方法[J]. 山东大学学报(理学版), 2017, 52(6): 24-31. |
[4] | 林鸿飞,张冬瑜,杨亮,徐博. 幽默计算及其应用研究[J]. 山东大学学报(理学版), 2016, 51(7): 1-10. |
[5] | 黄贤立,罗冬梅. 倾向性文本迁移学习中的特征重要性研究[J]. J4, 2010, 45(7): 13-17. |
|