《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (2): 59-64.doi: 10.6040/j.issn.1671-9352.0.2022.654
Yaxin SHI1(),Fengxia LIU1,*(),Hua CAI2
摘要:
图G的(k, r)-染色是对图G用k种颜色进行正常染色, 使得图G任一点v的邻点至少染min{r, d(v)}种不同的颜色。使图G有一个(k, r)-染色的最小的整数k称为图G的r-hued色数, 用χr(G)来表示。图G和H的笛卡尔乘积图记为G□H, 其顶点集为V(G)×V(H), (u1, v1)与(u2, v2)相邻当且仅当u1=u2, v1v2∈E(H)或v1=v2, u1u2∈E(G)。确定了WnPm的r-hued色数。
中图分类号:
1 | LAI H, LIN J N, POON H. Upper bounds of dynamic chromatic number[J]. ARS Combinatoria, 2003, 68 (1):193-201. |
2 |
LAI H J, LIN J L, MONTGOMERY B, et al. Conditional colorings of graphs[J]. Discrete Mathematics, 2006, 306 (16):1997-2004.
doi: 10.1016/j.disc.2006.03.052 |
3 | AKBARI S, GHANBARI M, JAHANBEKAM S. On the dynamic coloring of Cartesian product graphs[J]. ARS Combinatoria, 2014, 114, 161-168. |
4 | KANG R, MÜLLER T, WEST D B. On r-dynamic coloring of grids[J]. Discrete Applied Mathematics, 2015, 186 (C):286-290. |
5 |
KALIRAJ K, NARESH KUMAR H, VERNOLD VIVIN J. On dynamic colouring of Cartesian product of complete graph with some graphs[J]. Journal of Taibah University for Science, 2020, 14 (1):168-171.
doi: 10.1080/16583655.2020.1713586 |
6 |
LIANG L M, LIU F X, WU B. On r-hued coloring of product graphs[J]. RAIRO-Operations Research, 2022, 56 (6):3845-3852.
doi: 10.1051/ro/2022186 |
7 | JAHANBEKAM S, KIM J, SUIL O, et al. On r-dynamic coloring of graphs[J]. Discrete Applied Mathematics, 2016, 206 (C):65-72. |
8 | SHAO R, ZUO L. r-hued coloring of Cartesian product of path with its square[J]. Advances in Mathematics(China), 2019, (48):21-28. |
[1] | 索孟鸽,陈京荣,张娟敏. 笛卡尔乘积图的k-路点覆盖[J]. 《山东大学学报(理学版)》, 2022, 57(12): 103-110. |
|