您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (2): 59-64.doi: 10.6040/j.issn.1671-9352.0.2022.654

•   • 上一篇    下一篇

WnPmr-hued染色

史雅馨1(),刘凤霞1,*(),蔡华2   

  1. 1. 新疆大学数学与系统科学学院, 新疆 乌鲁木齐 830046
    2. 昌吉学院数学与数据科学学院, 新疆 昌吉 831199
  • 收稿日期:2022-11-30 出版日期:2024-02-20 发布日期:2024-02-20
  • 通讯作者: 刘凤霞 E-mail:1031666207@qq.com;xjulfx@163.com
  • 作者简介:史雅馨(1998—), 女, 硕士研究生, 研究方向为图论及其应用. E-mail: 1031666207@qq.com
  • 基金资助:
    新疆维吾尔自治区自然科学基金资助项目(2022D01C02);国家自然科学基金地区项目(11961067)

On r-hued coloring of WnPm

Yaxin SHI1(),Fengxia LIU1,*(),Hua CAI2   

  1. 1. College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, Xinjiang, China
    2. College of Mathematics and Data Sciences, Changji University, Changji 831199, Xinjiang, China
  • Received:2022-11-30 Online:2024-02-20 Published:2024-02-20
  • Contact: Fengxia LIU E-mail:1031666207@qq.com;xjulfx@163.com

摘要:

G的(k, r)-染色是对图Gk种颜色进行正常染色, 使得图G任一点v的邻点至少染min{r, d(v)}种不同的颜色。使图G有一个(k, r)-染色的最小的整数k称为图Gr-hued色数, 用χr(G)来表示。图GH的笛卡尔乘积图记为GH, 其顶点集为V(GV(H), (u1, v1)与(u2, v2)相邻当且仅当u1=u2, v1v2E(H)或v1=v2, u1u2E(G)。确定了WnPmr-hued色数。

关键词: (k, r)-染色, r-hued色数, 笛卡尔乘积图

Abstract:

A(k, r)-coloring of a graph G is a proper k-coloring of graph G such that the neighbors of any vertex receive at least min{r, d(v)} different colors. The smallest positive integral k such that graph G has a(k, r)-coloring is defined as the r-hued chromatic number and denoted by χr(G). The Cartesian product of two graphs G and H, denoted by GH, has vertex set V(GV(H), where(u1, v1) and(u2, v2) are adjacent if and only if either u1=u2 and v1v2E(G), or v1=v2 and u1u2E(G). In this paper, the r-hued chromatic number of WnPm is determined.

Key words: (k, r)-coloring, r-hued chromatic number, Cartesian product of graphs

中图分类号: 

  • O157.5
1 LAI H, LIN J N, POON H. Upper bounds of dynamic chromatic number[J]. ARS Combinatoria, 2003, 68 (1):193-201.
2 LAI H J, LIN J L, MONTGOMERY B, et al. Conditional colorings of graphs[J]. Discrete Mathematics, 2006, 306 (16):1997-2004.
doi: 10.1016/j.disc.2006.03.052
3 AKBARI S, GHANBARI M, JAHANBEKAM S. On the dynamic coloring of Cartesian product graphs[J]. ARS Combinatoria, 2014, 114, 161-168.
4 KANG R, MÜLLER T, WEST D B. On r-dynamic coloring of grids[J]. Discrete Applied Mathematics, 2015, 186 (C):286-290.
5 KALIRAJ K, NARESH KUMAR H, VERNOLD VIVIN J. On dynamic colouring of Cartesian product of complete graph with some graphs[J]. Journal of Taibah University for Science, 2020, 14 (1):168-171.
doi: 10.1080/16583655.2020.1713586
6 LIANG L M, LIU F X, WU B. On r-hued coloring of product graphs[J]. RAIRO-Operations Research, 2022, 56 (6):3845-3852.
doi: 10.1051/ro/2022186
7 JAHANBEKAM S, KIM J, SUIL O, et al. On r-dynamic coloring of graphs[J]. Discrete Applied Mathematics, 2016, 206 (C):65-72.
8 SHAO R, ZUO L. r-hued coloring of Cartesian product of path with its square[J]. Advances in Mathematics(China), 2019, (48):21-28.
[1] 索孟鸽,陈京荣,张娟敏. 笛卡尔乘积图的k-路点覆盖[J]. 《山东大学学报(理学版)》, 2022, 57(12): 103-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 汤晓宏1,胡文效2*,魏彦锋2,蒋锡龙2,张晶莹2,. 葡萄酒野生酿酒酵母的筛选及其生物特性的研究[J]. 山东大学学报(理学版), 2014, 49(03): 12 -17 .
[2] 袁瑞强,刘贯群,张贤良,高会旺 . 黄河三角洲浅层地下水中氢氧同位素的特征[J]. J4, 2006, 41(5): 138 -143 .
[3] 郭文鹃,杨公平*,董晋利. 指纹图像分割方法综述[J]. J4, 2010, 45(7): 94 -101 .
[4] 张雯,张化祥*,李明方,计华. 决策树构建方法:向前两步优于一步[J]. J4, 2010, 45(7): 114 -118 .
[5] 宋 颖,张兴芳,王庆平 . 参数Kleene系统的α-反向三Ⅰ支持算法[J]. J4, 2007, 42(7): 45 -48 .
[6] 张京友,张培爱,钟海萍. 进化图论在知识型企业组织结构设计中的应用[J]. J4, 2013, 48(1): 107 -110 .
[7] 肖 华 . 多维反射倒向随机微分方程的解对参数的连续依赖性[J]. J4, 2007, 42(2): 68 -71 .
[8] 何海伦, 陈秀兰*. 变性剂和缓冲系统对适冷蛋白酶MCP-01和中温蛋白酶BP-01构象影响的圆二色光谱分析何海伦, 陈秀兰*[J]. 山东大学学报(理学版), 2013, 48(1): 23 -29 .
[9] 王碧玉,曹小红*. 算子矩阵的Browder定理的摄动[J]. 山东大学学报(理学版), 2014, 49(03): 90 -95 .
[10] 胡选子1, 谢存禧2. 基于人工免疫网络的机器人局部路径规划[J]. J4, 2010, 45(7): 122 -126 .