您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (6): 19-24.doi: 10.6040/j.issn.1671-9352.0.2023.041

•   • 上一篇    下一篇

k-桥图匹配最大根的极值

马海成(),攸晓杰   

  1. 青海民族大学数学与统计学院, 青海 西宁 810007
  • 收稿日期:2023-10-30 出版日期:2024-06-20 发布日期:2024-06-17
  • 作者简介:马海成(1965—), 男, 教授, 博士, 研究方向为代数图论. E-mail: qhmymhc@163.com
  • 基金资助:
    国家自然科学基金资助项目(11561056);青海省自然科学基金资助项目(2022-ZJ-924)

Extremum of the matching maximum root of k-bridge graphs

Haicheng MA(),Xiaojie YOU   

  1. School of Mathematics and Statistics, Qinghai Minzu University, Xining 810007, Qinghai, China
  • Received:2023-10-30 Online:2024-06-20 Published:2024-06-17

摘要:

G是有n个点的图, μ(G, x)表示图G的匹配多项式, M1(G)表示多项式μ(G, x)的最大根, 称为匹配最大根。把k条路Pa1+2, Pa2+2, …, Pak+2的左右2个端点分别黏结成2个点后得到的图称为k-桥图, 记为θk(a1, a2, …, ak)。有n个点且每一条路上的点数几乎相等的k-桥图记为θk* (n)。证明了: 在n个点的k-桥图中匹配最大根取得最小的图是$\theta_k(0, \overbrace{1, 1 \cdots, 1}^{k-2}, n-k)$; 在n个点的任意k-桥图中匹配最大根取得最小的图是2-桥图(圈)Cn, 最大的图是(n-1)-桥图θn-1(0, 1, 1…, 1)。

关键词: 匹配多项式, 匹配最大根, k-桥图

Abstract:

Let G be a graph with n vertices, and μ(G, x) denote the matching polynomial of graph G, M1(G) denote the maximum root of the polynomial μ(G, x), which is called the matching maximum root. By identifying the first vertices and the last vertices of k paths Pa1+2, Pa2+2, …, Pak+2, respectively, the resulting graph is called the k-bridge graphs, denoted by θk(a1, a2, …, ak). A k-bridge graph with n vertices and nearly equal number of vertices on each paths is denoted as θk*(n). The following conclusions are proved. In all k-bridge graphs with n vertices, the matching maximum root to get the smallest graph is $\theta_k(0, \overbrace{1, 1 \cdots, 1}^{k-2}, n-k)$. In any k-bridge graphs with n vertices, the graph that the matching maximum root to get the smallest is 2-bridge graphs Cn(cycle), and the biggest one is (n-1)-bridge graph θn-1(0, 1, 1…, 1).

Key words: matching polynomial, matching maximum root, k-bridge graph

中图分类号: 

  • O157.5

图1

k-叉树Tk(a1, a2, …, ak)和k-桥图θk(a1, a2, …, ak)"

图2

图θk, s(a1, a2, …, ak|b1, b2, …, bs)和(n-1)-桥图θn-1(0, 1, 1…, 1)"

图3

图Gu, iPn"

图4

图Gv, 1Pn+1和Ge, n"

图5

图G和G(e)"

1 GODSIL C D . Algebraic combinatorics[M]. New York: Chapman and Hall, 1993.
2 HEILMANN O J , LIEB E H . Theory of monomer-dimer systems[J]. Communications in Mathematical Physics, 1972, 25, 190- 232.
doi: 10.1007/BF01877590
3 GUTMAN I , WAGNER S . The matching energy of a graph[J]. Discrete Applied Mathematics, 2012, 160, 2177- 2187.
doi: 10.1016/j.dam.2012.06.001
4 HOSOYA H . Topological index, a newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons[J]. Bulletin of the Chemical Society of Japan, 1971, 44, 2332- 2339.
doi: 10.1246/bcsj.44.2332
5 GUTMAN I . A note on analogies between the characteristic and the matching polynomial of a graph[J]. Publications dc Linstitut Mathematique, 1982, 31 (45): 27- 31.
6 GODSIL C D . Hermite ploynomials and a duality relation for matching polynomials[J]. Combinatorica, 1981, 1 (3): 257- 262.
doi: 10.1007/BF02579331
7 FARRELL E J , WHITEHEAD E G , J r . Connections between the matching and chromatic polynomials[J]. International Journal of Mathematics and Mathematical Sciences, 1992, 15 (4): 757- 766.
doi: 10.1155/S016117129200098X
8 GODSIL C D , GUTMAN I . On the theory of the matching polynomials[J]. Journal of Graph Theory, 1981, 5 (2): 137- 144.
doi: 10.1002/jgt.3190050203
9 GODSIL C D , GUTMAN I . Some remarks on the matching polynomial and its zeros[J]. Croatica Chemica Acta, 1981, 54 (1): 53- 59.
10 FARRELL E J . An introduction to matching polynomial[J]. Journal of Combinatorial Theory, 1979, 27 (B): 75- 86.
11 MA H C , REN H Z . The new methods for cnstructing matching-equivalence graphs[J]. Disrete Mathematic, 2007, 307, 125- 131.
12 马海成. 匹配最大根小于2的图的匹配等价图类[J]. 系统科学与数学, 2003, 20 (3): 337- 342.
doi: 10.3969/j.issn.1000-0577.2003.03.007
MA Haicheng . The matching equivalent classes of graphs with the maximum matching root less than 2[J]. Journal of Systems Science and Mathematical Sciences, 2003, 20 (3): 337- 342.
doi: 10.3969/j.issn.1000-0577.2003.03.007
13 马海成. 匹配最大根小于等于2的图的匹配等价[J]. 数学学报, 2006, 49 (6): 1355- 1360.
doi: 10.3321/j.issn:0583-1431.2006.06.023
MA Haicheng . The matching equivalent classes of graphs with the maximum matching root less than or equal to 2[J]. Acta Mathematica Sinica, Chinese Series, 2006, 49 (6): 1355- 1360.
doi: 10.3321/j.issn:0583-1431.2006.06.023
14 马海成, 刘小花. θ-图的匹配能量和Hosoya指标排序[J]. 厦门大学学报(自然科学版), 2019, 58 (3): 391- 396.
MA Haicheng , LIU Xiaohua . The order of matching energy and Hosoya index of θ-graphs[J]. Journal of Xiamen University (Natural Science), 2019, 58 (3): 391- 396.
15 马海成, 李丹阳. 一类双圈图匹配多项式的最大根[J]. 广州大学学报(自然科学版), 2020, (1): 72- 77.
MA Haicheng , LI Danyang . The largest root of matching polynomials of a class of bicyclic graphs[J]. Journal of Guangzhou University(Natural Science Edition), 2020, (1): 72- 77.
16 CVETKOVIĆ D , DOOB M , SACHS H . Spectra of graphs: theory and application[M]. New York: Academic Press, 1980.
[1] 高尚,马海成. K1∪P2∪In的匹配等价图类[J]. 《山东大学学报(理学版)》, 2022, 57(11): 26-36.
[2] 解承玲, 马海成. 两个点并路的匹配等价图类[J]. 《山东大学学报(理学版)》, 2021, 56(1): 29-34.
[3] 刘小花,马海成. Q形图的匹配能序及Hosoya指标排序[J]. 山东大学学报(理学版), 2018, 53(8): 61-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 秦兆宇,刘师莲*,杨银荣,刘芙君,李建远,宋春华 . 白斑综合征中国对虾肝胰腺蛋白质组学研究的技术探索[J]. J4, 2007, 42(7): 5 -08 .
[2] 伍代勇. 一类具有反馈控制非线性离散Logistic模型的全局吸引性[J]. J4, 2013, 48(4): 114 -110 .
[3] 张方国. 椭圆曲线在密码中的应用:过去,现在,将来…[J]. J4, 2013, 48(05): 1 -13 .
[4] 高莉莉,马 霞,赵宏飞,裴家伟,吕兆林,张柏林* . 弱化H+-ATPase的德氏乳杆菌乳酸亚种的生理特性研究[J]. J4, 2008, 43(7): 1 -09 .
[5] 宋霞1,2,刘保东1*,张全信2. 一类二阶非线性摄动微分方程解的渐近性质[J]. J4, 2009, 44(2): 19 -23 .
[6] 丁 月,孔祥智 . H#-富足半群[J]. J4, 2008, 43(4): 55 -57 .
[7] 马统一1,2,刘春燕2. Lp-混合投影体的Shephard问题与Minkowski-Funk变换[J]. J4, 2012, 47(10): 21 -30 .
[8] 孙林, 郑煜, 姚娟. 不确定离散奇异系统的鲁棒非脆弱H状态反馈控制[J]. J4, 2011, 46(1): 35 -41 .
[9] . 具有AR(2)误差非线性回归模型的联合检验[J]. J4, 2009, 44(7): 38 -43 .
[10] 于文广1,黄玉娟2. 干扰条件下变破产下限多元风险模型的破产概率[J]. J4, 2011, 46(3): 58 -62 .