您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (12): 11-18.doi: 10.6040/j.issn.1671-9352.0.2023.156

• • 上一篇    下一篇

基于对合环中的广义逆元素刻画SEP元

梁佳辉,王龙,魏俊潮*   

  1. 扬州大学数学科学学院, 江苏 扬州 225002
  • 发布日期:2024-12-12
  • 通讯作者: 魏俊潮(1968— ),男,教授,硕士生导师,博士,研究方向为环上广义逆. E-mail:jcweiyz@126.com
  • 基金资助:
    国家自然科学基金资助项目(11901510)

Characterizing SEP elements based on generalized inverse elements in rings with involution

LIANG Jiahui, WANG Long, WEI Junchao*   

  1. College of Mathematical Science, Yangzhou University, Yangzhou 225002, Jiangsu, China
  • Published:2024-12-12

摘要: 首先通过对给定方程的可解性以及构造群逆元、MP(Moore-Penrose)逆元以及可逆元方程,研究*-环R中SEP元的一些等价刻画;而后利用方程在给定集合中的解以及构造广义逆方程、双变量方程的一般解给出SEP元的新刻画。

关键词: EP元, 偏序等距元, SEP元, 对合环

Abstract: In this paper, we firstly study some characterizations of SEP elements in rings with involution by the solvability of certain equation and construct the group inverses, MP inverses and invertible elements; Then we depict SEP elements by the solution of the equations, generalized inverse equations and the general solution of bivariate equations in a certain set.

Key words: EP element, partial isometry element, strongly EP element, involution ring

中图分类号: 

  • O153.3
[1] MOSIC D, DJORDJEVIC D S, KOLIHA J J. EP elements in rings[J]. Linear Algebra and Its Applications, 2009, 431(5):527-535.
[2] PENROSE R. A generalized inverse for matrices[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1955, 51(3):406-413.
[3] BEN-ISRAEL A. GREVILLE T N E. Generalized inverses: theory and applications[M]. 2nd ed. New York: Springer, 2003.
[4] HARTWIG R E. Block generalized inverses[J]. Archive for Rational Mechanics and Analysis, 1976, 61(3):197-251.
[5] MOSIC D, DJORDJEVIC D S. Partial isometries and EP elements in rings with involution[J]. The Electronic Journal of Linear Algebra, 2009, 18(1):761-772.
[6] ZHAO Dandan, WEI Junchao. Some new characterizations of partial isometries in rings with involution[J]. International Electronic Journal of Algebra, 2021, 30:304-311.
[7] MOSIC D. Generalized inverses: faculty of sciences and mathematics[D]. Niš: University of Niš, 2018.
[8] QU Yingchun, WEI Junchao, YAO Hua. Characterizations of normal elements in rings with involution[J]. Acta Mathematica Hungarica, 2018, 156(2):1-6.
[9] MOSIC D, DJORDJEVIC D S. Further results on partial isometries and EP elements in rings with involution[J]. Mathematical and Computer Modelling, 2011, 54(1/2):460-465.
[10] ZHAO Ruju, YAO Hua, WEI Junchao. Characterizations of partial isometries and two special kinds of EP elements[J]. Czechoslovak Mathematical Journal, 2020, 70(2):539-551.
[11] XU Zhicheng, TANG Ruijun, WEI Junchao. Strongly EP elements in a ring with involution[J]. Filomat, 2020, 34(6):2101-2107.
[12] CAI Jiayi, CHEN Zhichao, WEI Junchao. Partial isometry and strongly EP elements[J]. Filomat, 2021, 35(6):2121-2128.
[13] ZHAO Dandan, WEI Junchao. Strongly EP elements in rings with involution[J]. Journal of Algebra and Its Applications, 2022, 21(5):2250088.
[14] MOSIC D, DJORDJEVIC D S. Moore-Penrose-invertible normal and Hermitian elements in rings[J]. Linear Algebra and Its Applications, 2009, 431(5/6/7):732-745.
[15] MOSIC D, DJORDJEVIC D S. New characterizations of EP, generalized normal and generalized Hermitian elements in rings[J]. Applied Mathematics Computation, 2012, 218(12):6702-6710.
[16] QU Yingchun, YAO Hua, WEI Junchao. Some characterizations of partial isometry elements in rings with involutions[J]. Filomat, 2019, 33(19):6395-6399.
[17] 李德才,史丽妍,魏俊潮. EP元与方程的解[J]. 南京师大学报(自然科学版), 2019, 42(1):20-22. LI Decai, SHI Liyan, WEI Junchao. EP elements and solutions of equations[J]. Journal of Nanjing Normal University(Natural Science Edition), 2019, 42(1):20-22.
[18] 史丽妍,马丽,魏俊潮. EP元的一些新刻画[J]. 数学杂志, 2019, 39(6):921-924. SHI Liyan, MA Li, WEI Junchao. Some new characterizations on EP elements[J]. Journal of Mathematics, 2019, 39(6):921-924.
[19] 李小明,朱心怡,魏俊潮. Hermite矩阵与矩阵方程的解[J]. 扬州大学学报(自然科学版), 2022, 25(5):1-6. LI Xiaoming, ZHU Xinyi, WEI Junchao. Hermite matrix and solutions of matrix equations[J]. Journal of Yangzhou University(Natural Science Edition), 2022, 25(5):1-6.
[1] 官梦鸽,周海楠,魏俊潮. EP元的一些等价刻画[J]. 《山东大学学报(理学版)》, 2023, 58(8): 13-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 鄢来云 沈艳军. 基于扰动观测器的一类网络控制系统的H控制[J]. J4, 2010, 45(1): 80 -85 .
[2] 蔡红云,马晓雪. 在线社会网络中基于关系强度的访问控制机制[J]. 山东大学学报(理学版), 2016, 51(7): 90 -97 .
[3] 卢涛,贺伟. 邻域系统[J]. 山东大学学报(理学版), 2016, 51(6): 65 -69 .
[4] 陈素根1,苏本跃2,汪志华1. 4阶三角多项式空间中的T-Bézier基在三角域上的推广[J]. J4, 2013, 48(3): 31 -36 .
[5] 何新华, 胡文发, 肖敏. 突发事件下应急服务供应链的期权协同决策[J]. 山东大学学报(理学版), 2015, 50(11): 81 -90 .
[6] 张志浩,林耀进,卢舜,吴镒潾,王晨曦. 流缺失标记环境下的多标记特征选择[J]. 《山东大学学报(理学版)》, 2022, 57(8): 39 -52 .
[7] 许柏英,张甜甜. 铜绿微囊藻气囊结构蛋白GvpC的表达纯化与晶体生长研究[J]. 《山东大学学报(理学版)》, 2018, 53(11): 1 -8 .
[8] 张明 李小明. 酸沉降对泰山土壤酸化的影响[J]. J4, 2010, 45(1): 36 -40 .
[9] 张秋华, 刘利斌, 周恺. 时滞非局部扩散Lotka-Volterra 竞争系统行波解的存在性[J]. 山东大学学报(理学版), 2015, 50(01): 90 -94 .
[10] 杨明国,王桂新. 中国碳排放动态演进的区域差异及其影响因素——来自省际面板数据的经验证据[J]. 山东大学学报(理学版), 2017, 52(6): 16 -23 .