《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (12): 109-113.doi: 10.6040/j.issn.1671-9352.0.2023.380
成丹丹,王国涛
CHENG Dandan, WANG Guotao
摘要: 对整数群Z-部分作用的动力系统,引入部分作用各种回复点的定义;同时研究其性质及其之间的关系;最后,给出2个整数群 Z-部分作用的动力系统在拓扑半共轭条件下各种回复点之间的关系。
中图分类号:
[1] BARAVIERA A, GONCALVES D, ROYER D, et al. Topological entropy for partial actions of the group Z[EB/OL].(2015-09-20)[2023-04-09]. http://arxiv.org/abs/1509.0614v4. [2] DOKUCHAEV M, EXEL R. Partial actions and subshifts[J]. Journal of Functional Analysis, 2017, 272(12):5038-5106. [3] EXEL R. Circle Actions on C*-algebras, partial automorphisms and generalized pimsner voiculescu exect sequences[J]. Journal of Functional Analysis, 1994, 122(2):361-401. [4] EXEL R, LACA M, QUIGG J. Partial dynamical systems and C*-algebras generated by partial isometries[J]. Journal of Operator Theory, 2002, 47(1):169-186. [5] EXEL R. Partial dynamical systems, fell bundles and Applications[M]. Providence: American Mathematical Society, 2017. [6] BARREIRA L. Ergodic theory, hyperbolic dynamics and dimension theory[M]. Heidelberg: Springer, 2012. [7] CHENG D, LI Z. Mean dimensions for partial actions[J]. Journal of Difference Equations and Applications, 2020, 26(4): 561-573. [8] CARVALHO M, RODRIGUES F B, VARANDAS P. Semigroup actions of expanding maps [J]. Journal of Statistical Physics, 2017, 166(1):114-136. [9] DOKUCHAEV M. Partial actions: a survey[M] //DOKUCHAEV M. Groups, Algebras and Applications. Providence: American Mathematical Society, 2011:173-184. [10] DOKUCHAEV M. Recent development around partial actions [J].São Paulo Journal of Mathematical Sciences, 2019, 13(1):195-247. [11] LI T, YORKE Y. Period three implies chaos [J]. American Mathematical Monthly, 1975, 82:985-992. [12] GU R, SUN T, ZHENG T. Non-wandering set of a continuous graph map [J]. Applied Mathematics, 2003, 18:477-481. [13] HUANG W, YE X. Non-wandering sets of the powers of maps of a tree [J]. Science in China(Series A), 2001, 44:31-39. [14] MAKHROVA E N, VANIUKOVA K S. On the set of non-wandering points of monotone maps on local dendrites [J]. Journal of Physics, 2016, 692:012012. [15] MAI J, SHAO S. Spaces of ω-limit sets of graph maps[J]. Fundamenta Mathematicae, 2007, 196:91-100. [16] MAI J, SUN T. The ω-limit set of a graph map[J]. Topology and Its Applications, 2007, 154:2306-2311. [17] AKIN E C, JEFFREY D. Conceptions of topological transitivity[J]. Topology and Its Applications, 2012, 159(12):2815-2830. [18] SALMAN M, DAS R. Multi-transitivity in non-autonomous discrete systems[J].Topology and Its Applications, 2020, 278:107237. [19] YAN K, LIU Q, ZENG F. Classification of transitive group actions[J]. Discrete and Continuous Dynamical Systems. 2021, 41(12):5579-5607. [20] 叶向东,黄文,邵松. 拓扑动力系统概论[M]. 北京:科学出版社, 2008:3-25. YE Xiandong, HUANG Wen, SHAO Song. Introduction to topological dynamical systems[M]. Beijing: Science Press, 2008:3-25. |
No related articles found! |
|