您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (5): 33-39.doi: 10.6040/j.issn.1671-9352.0.2024.175

• • 上一篇    

新的(2+1)维Boussinesq方程的孤立子解

郭学军,曹玉雷*   

  1. 南阳理工学院数理学院, 河南 南阳 473004
  • 发布日期:2025-05-19
  • 通讯作者: 曹玉雷(1993— ),男,讲师,博士,研究方向为孤立子与可积系统. E-mail:caoyulei@mail.ustc.edu.cn
  • 作者简介:郭学军(1966— ),男,教授,研究方向为孤立子与可积系统. E-mail:gxuejun66@163.com*通信作者:曹玉雷(1993— ),男,讲师,博士,研究方向为孤立子与可积系统. E-mail:caoyulei@mail.ustc.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(12301312)

Soliton solutions of the new(2+1)-dimensional Boussinesq equation

GUO Xuejun, CAO Yulei*   

  1. School of Mathematics and Physics, Nanyang Institute of Technology, Nanyang 473004, Henan, China
  • Published:2025-05-19

摘要: 研究(2+1)维的Boussinesq方程,该系统是Boussinesq方程的一个多维推广版本。利用Hirota的双线性方法构造(2+1)维Boussinesq方程的孤立子解,并分析孤立子解的局部特征,给出了孤立子解的动力学行为。此外,在特殊参数限制下得到了共振的孤立子解。由于共振碰撞,孤立子解呈现“V”型,不再是传统的交叉型。更高阶的共振孤立子解的动力学行为更加复杂多样,由基本的共振孤立子叠加而成。

关键词: (2+1)-维Boussinesq方程, 双线性方法, 孤立子解, 动力学

Abstract: The(2+1)-dimensional Boussinesq equation is investigated, which is a multidimensional extension of the typical Boussinesq equation. The soliton solutions of(2+1)-dimensional Boussinesq equation are constructed by using the Hirota bilinear method. The local characteristics of the soliton solutions are also analyzed, and the dynamic behaviors of these soliton solutions are given analytically. Additionally, under the limitation of special parameters, we also obtain the resonance soliton solutions, and due to the resonance collision, the soliton solution presents a "V" shape, which is no longer the traditional cross type. The dynamics of higher-order resonance soliton solutions are more complex and diverse, consisting of the superposition of fundamental resonant solitons.

Key words: (2+1)-dimensional Boussinesq equation, bilinear method, soliton solution, dynamics

中图分类号: 

  • O175.29
[1] HIROTA R. The direct method in soliton theory[M]. Cambridge: Cambridge University Press, 2004.
[2] 袁丰. 两个(2+1)维非线性发展方程的精确解[D]. 合肥:中国科学技术大学, 2020. YUAN Feng. Exact solutions of two(2+1)-dimensional nonlinear evolution equations[D]. Hefei: University of Science and Technology of China, 2020.
[3] 郭利娟. 两类Davey-Stewartson方程的有理解和半有理解[D]. 合肥:中国科学技术大学, 2019. GUO Lijuan. Rational and semi-rational solutions in two types of the Davey-Stewartson equation[D]. Hefei: University of Science and Technology of China, 2019.
[4] CAO Yulei, HE Jingsong, CHENG Yi. Doubly localized two-dimensional rogue waves generated by resonant collision in Maccari system[J]. Studies in Applied Mathematics, 2024, 152:648-672.
[5] CAO Yulei, CHENG Yi, HE Jingsong. Resonant collisions of high-order localized waves in the Maccari system[J]. Journal of Mathematical Physics, 2023, 64:043501.
[6] OHTA Y, YANG Jianke. General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation[J]. Proceedings of the Royal Society A, 2012, 468:1716-1740.
[7] RAO J J, FOKAS A S, HE J S. Doubly localized two-dimensional rogue waves in the davey-stewartson I equation[J]. Journal of Nonlinear Science, 2021, 31:67.
[8] HIROTA R. Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons[J]. Physical Review Letters, 1971, 27:1192.
[9] LI Yishen, GU Xinshen. Generating solution of Boussinesq equation by Darboux transformation of three order eigenvalue differential equations[J]. Ann Differential Equations, 1986, 4:419-422.
[10] GUO Lijuan, WANG Lihong, CHENG Yi, et al. Higher-order rogue waves and modulation instability of the two-component derivative nonlinear Schrödinger equation[J]. Communications in Nonlinear Science & Numerical Simulation, 2019, 79:104915.
[11] HE Jingsong, ZHANG H R, WANG Lihong, et al. Generating mechanism for higher-order rogue waves[J]. Physical Review E, 2013, 87:052914.
[12] GUO Boling, LING Liming, LIU Qingping. Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions[J]. Physical Review E, 2002, 85:026607.
[13] ZHANG Liangli, LU Xing, ZHU Shengzi. Painlevé Analysis, Bäcklund transformation and soliton solutions of the(2+1)-dimensional variable-coefficient Boussinesq Equation[J]. International Journal of Theoretical Physics, 2024, 63:160.
[14] LU Xing, ZHANG Liangli, MA Wenxiu. Oceanic shallow-water description with(2+1)-dimensional generalized variable-coefficient Hirota-Satsuma-Ito equation: Painlevé analysis, soliton solutions, and lump solutions[J]. Physics of Fluids, 2024, 36:064110.
[15] WANG Yi, LU Xing. Bäcklund transformation and interaction solutions of a generalized Kadomtsev-Petviashvili equation with variable coefficients[J]. Chinese Journal of Physics, 2024, 89:37-45.
[16] PENG Xue, ZHAO Yiwei, LU Xing. Data-driven solitons and parameter discovery to the(2+1)-dimensional NLSE in optical fiber communications[J]. Nonlinear Dynamics, 2024, 112:1291-1306.
[17] WAZWAZ A M, KAUR L. New integrable Boussinesq equations of distinct dimensions with diverse variety of soliton solutions[J]. Nonlinear Dynamics, 2019, 97:83-94.
[18] MILES J M. Resonantly interacting solitary waves[J]. Journal of Fluid Mechanics, 1977, 79:171-179.
[1] 许越,韩晓玲. 具有双时滞的媒体效应对西藏地区包虫病控制的影响[J]. 《山东大学学报(理学版)》, 2023, 58(5): 53-62.
[2] 刘文岩,乔帅,高承华. 一类Filippov型HR神经元模型的全局动力学分析[J]. 《山东大学学报(理学版)》, 2023, 58(10): 13-23.
[3] 步宇翔, 罗奇. 液态甲胺中双稳态溶剂化双电子:神秘的自旋交叉动力学及双电子交换[J]. 《山东大学学报(理学版)》, 2021, 56(10): 113-126.
[4] 程栋材,黄志雄,任润桃,王晶晶,叶章基,张亮,王跃平. 防污剂在溶胀聚合物中扩散的模拟研究[J]. 《山东大学学报(理学版)》, 2018, 53(11): 18-25, 34.
[5] 马莹,张恒,苑世领. 分子模拟研究醇醚类表面活性剂耐盐机理[J]. 山东大学学报(理学版), 2016, 51(7): 126-130.
[6] 潘龙强1,2,耿存亮1,慕宇光3,刘鑫4,胡毅5,潘景山4,周亚滨2,龚斌5,王禄山1*. 生物大分子的分子动力学模拟过程在百万亿次集群上的部署优化[J]. J4, 2012, 47(7): 14-19.
[7] 李小俊,白晋涛,李永安, . 弹球系统的轨迹中点图[J]. J4, 2008, 43(9): 36-41 .
[8] 李艾黎,霍贵成*,邓凯波 . 酵母粉质量浓度对德氏乳杆菌保加利亚亚种KLDS 1.9201分批发酵动力学的影响
[J]. J4, 2008, 43(7): 23-27 .
[9] 卢 敏,罗 飞,刘维清,魏望和 . [111]晶向银纳米杆结构稳定性的分子动力学模拟[J]. J4, 2008, 43(1): 43-48 .
[10] 茹淼焱*, 王明刚,张洪林 . 微量量热法研究酸度和金属离子对淀粉酶催化作用的影响[J]. J4, 2007, 42(9): 16-18 .
[11] 石长光 . Faddeev模型中的多孤立子解[J]. J4, 2007, 42(7): 38-40 .
[12] 戚桂斌,刘庆阳,贝逸翎*,刘 雷 . 三种糖类物质的热降解动力学研究[J]. J4, 2007, 42(7): 19-21 .
[13] 解建坤,岳钦艳*,于 慧,岳文文,李仁波,张升晓,王晓娜 . 污泥活性炭对活性艳红K-2BP染料的吸附特性研究[J]. J4, 2007, 42(3): 64-70 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!