《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (10): 13-23.doi: 10.6040/j.issn.1671-9352.0.2022.319
Wenyan LIU(),Shuai QIAO,Chenghua GAO*()
摘要:
基于电磁辐射下的HR神经元模型,引入一种以膜电位为阈值的非光滑控制策略,即确定与电磁感应强度和外部刺激电流相对应的切换函数,从而建立一类四维Filippov型HR神经元模型。利用稳定性理论和数值模拟方法讨论2个子系统平衡点的存在性、稳定性和全局分岔行为。另外,基于双参数分岔分析,研究子系统的双稳态行为和演化模式。进一步,利用Filippov凸组合方法和Utkin等度控制方法分析系统的各类平衡点和滑膜动力学的存在性。最后,采用快-慢动力学的方法揭示阈值控制策略下的滑动放电模式和多稳态特征。
中图分类号:
1 |
QIAO Shuai , GAO Chenghua , AN Xinlei , et al. Electrical activities, excitability and multistability transitions of the hybrid neuronal model induced by electromagnetic induction and autapse[J]. Modern Physics Letters B, 2022, 36 (12): 2250006.
doi: 10.1142/S0217984922500063 |
2 |
MA Jun , TANG Jun . A review for dynamics in neuron and neuronal network[J]. Nonlinear Dynamics, 2017, 89 (3): 1569- 1578.
doi: 10.1007/s11071-017-3565-3 |
3 |
HODGKIN A L , HUXLEY A F . A quantitative description of membrane current and its application to conduction and excitation in nerve[J]. The Journal of Physiology, 1952, 117 (4): 500- 544.
doi: 10.1113/jphysiol.1952.sp004764 |
4 |
MORRIS C , LECAR H . Voltage oscillations in the barnacle giant muscle fiber[J]. Biophysical Journal, 1981, 35 (1): 193- 213.
doi: 10.1016/S0006-3495(81)84782-0 |
5 |
FITZHUGH R . Impulses and physiological states in theoretical models of nerve membrane[J]. Biophysical Journal, 1961, 1 (6): 445- 466.
doi: 10.1016/S0006-3495(61)86902-6 |
6 |
CHAYT R . Chaos in a three-variable model of an excitable cell[J]. Physica D: Nonlinear Phenomena, 1985, 16 (2): 233- 242.
doi: 10.1016/0167-2789(85)90060-0 |
7 |
HINDMARSH J L , ROSE R M . A model of the nerve impulse using two first-order differential equations[J]. Nature, 1982, 296 (5853): 162- 164.
doi: 10.1038/296162a0 |
8 | 乔帅, 张莉, 安新磊, 等. 电磁辐射下HR神经元模型的分岔分[J]. 河北师范大学学报(自然科学版), 2019, 43 (4): 122- 128. |
QIAO Shuai , ZHANG Li , AN Xinlei , et al. Bifurcation analysis on HR neuron models under electromagnetic radiation[J]. Journal of Hebei Normal University(Natural Science Edition), 2019, 43 (4): 122- 128. | |
9 |
MA Jun , TANG Jun . A review for dynamics of collective behaviors of network of neurons[J]. Science China Technological Sciences, 2015, 58 (12): 2038- 2045.
doi: 10.1007/s11431-015-5961-6 |
10 | 祁慧敏, 张莉, 安新磊, 等. 电磁感应下一类新皮层神经元的放电及同步[J]. 山东大学学报(理学版), 2021, 56 (5): 1- 11. |
QI Huimin , ZHANG Li , AN Xinlei , et al. Firing and synchronization of a neocortical neuron under electromagnetic induction[J]. Journal of Shandong University(Natural Science), 2021, 56 (5): 1- 11. | |
11 | 高月月, 李新颖, 李宁. 电磁感应下Chay神经元的放电分岔特性与同步[J]. 山东大学学报(理学版), 2021, 56 (1): 43- 51. |
GAO Yueyue , LI Xinying , LI Ning . Firing bifurcation characteristics and synchronization of Chay neuron under electromagnetic induction[J]. Journal of Shandong University(Natural Science), 2021, 56 (1): 43- 51. | |
12 |
LYU Mi , WANG Chunni , REN Guodong , et al. Model of electrical activity in a neuron under magnetic flow effect[J]. Nonlinear Dynamics, 2016, 85 (3): 1479- 1490.
doi: 10.1007/s11071-016-2773-6 |
13 |
WU Fuqiang , GU Huaguang . Bifurcations of negative responses to positive feedback current mediated by memristor in a neuron model with bursting patterns[J]. International Journal of Bifurcation and Chaos, 2020, 30 (4): 2030009.
doi: 10.1142/S0218127420300098 |
14 | 安新磊, 乔帅, 张莉. 基于麦克斯韦电磁场理论的神经元动力学响应与隐藏放电控制[J]. 物理学报, 2021, 70 (5): 40- 59. |
AN Xinlei , QIAO Shuai , ZHANG Li . Dynamic response and control of neuros based on electromagnetic field theory[J]. Acta Physica Sinica, 2021, 70 (5): 40- 59. | |
15 | 张秀芳, 马军, 徐莹, 等. 光电管耦合FitzHugh-Nagumo神经元的同步[J]. 物理学报, 2021, 70 (9): 090502. |
ZHANG Xiufang , MA Jun , XU Ying , et al. Synchronization between FitzHugh-Nagumo neurons coupled with phototube[J]. Acta Physica Sinica, 2021, 70 (9): 090502. | |
16 | WANG Guowei , YU Dong , DING Qianming , et al. Effects of electric field on multiple vibrational resonances in Hindmarsh-Rose neuronal systems[J]. Chaos, Solitons & Fractals, 2021, 150, 111210. |
17 | GE Mengyan , LU Lulu , XU Ying , et al. Vibrational mono-/bi-resonance and wave propagation in FitzHugh-Nagumo neural systems under electromagnetic induction[J]. Chaos Solitons & Fractals, 2020, 133, 109645. |
18 |
LI Tianyu , WANG Guowei , YU Dong , et al. Synchronization mode transitions induced by chaos in modified Morris-Lecar neural systems with weak coupling[J]. Nonlinear Dynamics, 2022, 108 (3): 2611- 2625.
doi: 10.1007/s11071-022-07318-5 |
19 | 乔帅, 安新磊, 王红梅, 等. 电磁感应下HR神经元模型的分岔分析与控制[J]. 山东大学学报(理学版), 2020, 55 (9): 1- 9. |
QIAO Shuai , AN Xinlei , WANG Hongmei , et al. Bifurcation analysis and control of HR neuron model under electromagnetic induction[J]. Journal of Shandong University (Natural Science), 2020, 55 (9): 1- 9. | |
20 |
ZHANG Ge , GUO Daqing , WU Fuqiang , et al. Memristive autapse involving magnetic coupling and excitatory autapse enhance firing[J]. Neurocomputing, 2020, 379, 296- 304.
doi: 10.1016/j.neucom.2019.10.093 |
21 |
BAO Han , HU Aihuang , LIU Wenbo , et al. Hidden bursting firings and bifurcation mechanisms in memristive neuron model with threshold electromagnetic induction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31 (2): 502- 511.
doi: 10.1109/TNNLS.2019.2905137 |
22 |
LIN Hairong , WANG Chunhua , SUN Yichuang , et al. Firing multistability in a locally active memristive neuron model[J]. Nonlinear Dynamics, 2020, 100 (4): 3667- 3683.
doi: 10.1007/s11071-020-05687-3 |
23 | 张蒙, 成宇, 张艺, 等. 忆阻器的温度效应改进模型及其仿生神经突触传递[J]. 动力学与控制学报, 2021, 19 (6): 67- 75. |
ZHANG Meng , CHENG Yu , ZHANG Yi , et al. An improved temperature-based memristor model and its bionic synaptic transmission[J]. Journal of Dynamics and Control, 2021, 19 (6): 67- 75. | |
24 | 王义波, 闵富红, 张雯, 等. 忆阻FitzHugh-Nagumo神经元电路有限时间同步[J]. 南京师范大学学报(工程技术版), 2020, 20 (2): 7- 14. |
WANG Yibo , MIN Fuhong , ZHANG Wen , et al. Finite-time synchronization of memristor-based FitzHugh-Nagumo circuit[J]. Journal of Nanjing Normal University (Engineering and Technology Edition), 2020, 20 (2): 7- 14. | |
25 | QIAO Shuai , AN Xinlei . Dynamic expression of a HR neuron model under an electric field[J]. International Journal of Modern Physics B, 2021, 35 (2): 2150024. |
26 | YANG Yi , LIAO Xiaofeng . Filippov Hindmarsh-Rose neuronal model with threshold policy control[J]. IEEE Transactions on Neural Networks & Learning Systems, 2018, 30 (1): 306- 311. |
27 | FILIPPOV A F . Differential equations with discontinuous righthand sides[M]. Dordrecht: Kluwer Academic Publishers, 1988. |
28 | UTKIN V I , CHANG H C . Sliding mode control on electro-mechanical systems[J]. Mathematical Problems in Engineering, 2002, 8 (4/5): 451- 473. |
29 | WANG Zhixiang , ZHANG Chun , ZHANG Zhengdi , et al. Bursting oscillations with boundary homoclinic bifurcations in a Filippov-type Chua's circuit[J]. Pramana, 2020, 94 (1): 95. |
[1] | 刘胜强,马宁涓. 异质性传染病模型峰值和达峰时间研究[J]. 《山东大学学报(理学版)》, 2023, 58(10): 1-12. |
[2] | 张美娇Symbol`@@, 张建刚, 南梦冉, 魏立祥. 色噪声激励下水轮机调节系统的分岔[J]. 《山东大学学报(理学版)》, 2021, 56(12): 94-99. |
[3] | 张蕾. Hardy空间上的非游荡复合算子[J]. J4, 2009, 44(3): 81-83 . |
[4] | 刘凌霞 . 一阶迭代泛函微分方程解析解的存在性[J]. J4, 2007, 42(12): 82-86 . |
[5] | 乔帅,安新磊,王红梅,张薇. 电磁感应下HR神经元模型的分岔分析与控制[J]. 《山东大学学报(理学版)》, 2020, 55(9): 1-9. |
[6] | 张金珂,张建刚. 基于改进粒子群优化算法的信号检测及故障诊断[J]. 《山东大学学报(理学版)》, 2023, 58(5): 63-75. |
[7] | 王红梅,安新磊,乔帅,张薇. e-HR神经元模型分岔分析与同步控制[J]. 《山东大学学报(理学版)》, 2020, 55(9): 10-18. |
[8] | 高月月,李新颖,李宁. 电磁感应下Chay神经元的放电分岔特性与同步[J]. 《山东大学学报(理学版)》, 2021, 56(1): 43-51. |
[9] | 魏立祥,张建刚,南梦冉,张美娇. 具有时滞的磁通神经元模型的稳定性及Hopf分岔[J]. 《山东大学学报(理学版)》, 2021, 56(5): 12-22. |
[10] | 路正玉,周伟,于欢欢,赵娜. 考虑广告溢出效应的博弈模型的动力学分析[J]. 《山东大学学报(理学版)》, 2019, 54(11): 63-70. |
[11] | 祁慧敏,张莉,安新磊,乔帅,肖冉. 电磁感应下一类新皮层神经元的放电及同步[J]. 《山东大学学报(理学版)》, 2021, 56(5): 1-11. |
[12] | 戴丽华,惠远先. 时标上具有联接项时滞的分流抑制细胞神经网络的概自守解[J]. 《山东大学学报(理学版)》, 2019, 54(10): 97-108. |
[13] | 朱彦兰,周伟,褚童,李文娜. 管理委托下的双寡头博弈的复杂动力学分析[J]. 《山东大学学报(理学版)》, 2021, 56(7): 32-45. |
[14] | 吕宁. 双脉冲阶段结构的种群系统动力学特性[J]. 《山东大学学报(理学版)》, 2021, 56(12): 100-110. |
[15] | 曹慧荣,周伟,褚童,周洁. 政府征税与补贴Bertrand博弈模型的动力学分析[J]. 《山东大学学报(理学版)》, 2019, 54(11): 52-62. |
|