您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (10): 1-12.doi: 10.6040/j.issn.1671-9352.0.2023.340

•   •    下一篇

异质性传染病模型峰值和达峰时间研究

刘胜强1(),马宁涓2   

  1. 1. 天津工业大学数学科学学院, 天津 300387
    2. 北京拔萃骏源学校, 北京 101102
  • 收稿日期:2023-08-04 出版日期:2023-10-20 发布日期:2023-10-17
  • 作者简介:刘胜强(1975—),男,教授,博士生导师,博士,研究方向为生物数学与动力系统. E-mail:sqliu@tiangong.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(12271401);天津市应用基础研究面上资助项目(22JCYBJC00080)

Peak value and peak time of nonlinear heterogeneous epidemic model

Shengqiang LIU1(),Ningjuan MA2   

  1. 1. School of Mathematical Science, Tiangong University, Tianjin 300387, China
    2. Beijing Bacui Junyuan School, Beijing 101102, China
  • Received:2023-08-04 Online:2023-10-20 Published:2023-10-17

摘要:

研究了短时间尺度下的非线性异质性传染病模型的传播规律, 建立了具有易感异质性的多群组传染病模型峰值以及达峰时间的理论结果, 并通过数值拟合验证了模型的有效性。

关键词: 传染病模型, 短时间尺度, 社会距离, 传播规律

Abstract:

The study focuses on analyzing the transmission mechanisms of nonlinear heterogeneous epidemic models within a short-time frame. As a result, novel criteria for determining the peak value and peak time of a heterogeneous epidemic model are achieved, and numerical fitting is applied to prove the efficient of the mold.

Key words: epidemic model, short-time scale, social distance, transmission mechanism

中图分类号: 

  • O193

图1

系统(1)和(5)的流行病发展趋势图"

图2

系统(5)和(10)的流行病发展趋势图"

图3

系统(6)和(11)的流行病发展趋势图"

1 BRAUER F , CASTILLO-CHAVEZ C . Mathematical models in population biology and epidemiology[M]. New York: Springer, 2012.
2 BRADY O J , GETHING P W , BHATT S , et al. Refining the global spatial limits of dengue virus transmission by evidence-based consensus[J]. PLoS Neglected Tropical Diseases, 2012, 6 (8): 1760- 1775.
doi: 10.1371/journal.pntd.0001760
3 BHATT S , GETHING P W , BRADY O J , et al. The global distribution and burden of dengue[J]. Nature, 2013, 496 (7446): 504- 507.
doi: 10.1038/nature12060
4 马知恩, 周义仓, 吴建宏. 传染病的建模与动力学[M]. 北京: 高等教育出版社, 2009.
MA Zhieng , ZHOU Yicang , WU Jianhong . Modeling and dynamics of infectious diseases[M]. Beijing: Higher Education Press, 2009.
5 WU Hongjia. Research on data analysis and modeling of sudden major infectious diseases[D]. Tianjin: Tiangong University, 2021.
6 KERMACK W O , MCKENDRICK A G . A contribution to the mathematical theory of epidemics[J]. Proceedings of the Royal Society A(Mathematical, Physical and Engineering Sciences), 1927, 115 (772): 700- 721.
7 KERMACK W O , MCKENDRICK A G . Contributions to the mathematical theory of epidemics. Ⅱ. The problem of endemicity[J]. Proceedings of the Royal Society A(Mathematical, Physical and Engineering Sciences), 1927, 138 (834): 55- 83.
8 ALLEN I J S . Some discrete-time SI, SIR and SIS epidemic models[J]. Mathematical Biosciences, 1994, 124, 83- 105.
doi: 10.1016/0025-5564(94)90025-6
9 ALLEN I J S , Burgin A M . Comparison of deterministic and stochastic SIS and SIR models in discrete time[J]. Mathematical Biosciences, 2000, 163, 1- 33.
doi: 10.1016/S0025-5564(99)00047-4
10 BRAUER F . Some simple nosocomial disease transmission models[J]. Bulletin of Mathematical Biology, 2015, 77 (3): 460- 469.
doi: 10.1007/s11538-015-0061-0
11 FENG Zhilan . Final and peak epidemic sizes for SEIR models with quarantine and isolation[J]. Mathematical Biosciences and Engineering, 2007, 4 (4): 675- 686.
doi: 10.3934/mbe.2007.4.675
12 ZHAO Shi , MUSA S S , LIN Qianying , et al. Estimating the unreported number of novel coronavirus (2019-nCoV) cases in China in the first half of January 2020: a data-driven modelling analysis of the early outbreak[J]. Journal of Clinical Medicine, 2020, 9 (2): 388.
doi: 10.3390/jcm9020388
13 LI Qun , GUAN Xuhua , WU Peng , et al. Early transmissiodynamics in Wuhan, China, of novel coronavirus—infected pneumonia[J]. New England Journal of Medicine, 2020, 382 (13): 1199- 1207.
doi: 10.1056/NEJMoa2001316
14 WU J T , KATHY L , LEUNG G M . Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study[J]. Lancet(London, England), 2020, 395 (10225): 689- 697.
15 TANG Biao , WANG Xian , LI Qiqn , et al. Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions[J]. Journal of Clinical Medicine, 2020, 9 (2): 462- 463.
doi: 10.3390/jcm9020462
16 SHANAFELT D W , JONES G , LIMA M , et al. Forecasting the 2001 foot-and-mouth disease epidemic in the UK[J]. Ecohealth, 2018, 15 (2): 338- 347.
doi: 10.1007/s10393-017-1293-2
17 WONG N S , LEE S S , MITCHELL KM , et al. Impact of pre-event testing and quarantine on reducing the risk of COVID-19 epidemic rebound: a modelling study[J]. BMC Infectious Diseases, 2022, 22 (1): 83.
doi: 10.1186/s12879-021-06963-2
18 SUN Ruoyan , SHI Junping . Global stability of multigroup epidemic model with group mixing and nonlinear incidence rates[J]. Applied Mathematics and Computation, 2011, 218 (2): 280- 286.
doi: 10.1016/j.amc.2011.05.056
19 MUROYA Y , ENATSU Y , LI H X . A note on the global stability of an SEIR epidemic model with constant latency time and infectious period[J]. Discrete and Continuous Dynamical Systems(Series B), 2012, 18 (1): 173- 183.
20 CHEN Xiaodan D , CUI Renhao . Global stability in a diffusive cholera epidemic model with nonlinear incidence[J]. Applied Mathematics Letters, 2020, 111, 106596.
21 WANG Xinxin , LIU Shengqiang , WANG Lin , et al. An epidemic patchy model with entry-exit screening[J]. Bulletin of Mathematical Biology, 2015, 77 (7): 1237- 1255.
doi: 10.1007/s11538-015-0084-6
22 FOY H M , COONEY M K , ALLAN I . Longitudinal studies of types A and B influenza among Seattle school children and families[J]. Journal of Infectious Diseases, 1976, 134 (4): 362- 369.
doi: 10.1093/infdis/134.4.362
23 LOEB M , RUSSELL M L , MOSS L , et al. Effect of influenza vaccination of children on infection rates in Hutterite communities: a randomized trial[J]. Journal of the American Medical Association, 2010, 303 (10): 943- 950.
doi: 10.1001/jama.2010.250
24 MUROYA Y , ENATSUB Y , KUNIYA T . Global stability for a multi-group SIRS epidemic model with varying population sizes[J]. Nonlinear Analysis(Real World Applications), 2013, 14 (3): 1693- 1704.
doi: 10.1016/j.nonrwa.2012.11.005
25 WANG Jinliang , WANG Jing , KUNIYA T . Analysis of an age-structured multi-group heroin epidemic model[J]. Applied Mathematics and Computation, 2019, 347, 78- 100.
doi: 10.1016/j.amc.2018.11.012
26 WANG Xia , WU Huilin , TANG Sanyi . Assessing age-specific vaccination strategies and post-vaccination reopening policies for COVID-19 Control Using SEIR modeling approach[J]. Bulletin of Mathematical Biology, 2022, 84 (10): 108- 120.
doi: 10.1007/s11538-022-01064-w
27 BRAUER F . Early estimates of epidemic final sizes[J]. Journal of Biological Dynamics, 2018, 13 (SI): 23- 30.
28 BRAUER F . The final size of a serious epidemic[J]. Bulletin of Mathematical Biology, 2018, 81 (3): 869- 877.
29 CUI Jingan , ZHANG Yannan , FENG Zhilan . Influence of non-homogeneous mixing on final epidemic size in a meta-population model[J]. Journal of Biological Dynamics, 2018, 13 (SI): 31- 46.
30 ARINO J , BRAUER F , VAN DEN DRIESSCHE P , et al. Simple models for containment of a pandemic[J]. Journal of the Royal Society Interface, 2006, 3 (8): 453- 457.
doi: 10.1098/rsif.2006.0112
31 ARINO J , BRAUER F , VAN DEN DRIESSCHE P , et al. A final size relation for epidemic models[J]. Mathematical Biosciences and Engineering, 2007, 4 (2): 159- 175.
doi: 10.3934/mbe.2007.4.159
32 BRAUER F . The Kermack-McKendrick epidemic model revisited[J]. Mathematical Biosciences, 2005, 198 (2): 119- 131.
doi: 10.1016/j.mbs.2005.07.006
33 MA J , EARN D J D . Generality of the final size formula for an epidemic of a newly invading infectious disease[J]. Bulletin of Mathematical Biology, 2006, 68 (3): 679- 702.
doi: 10.1007/s11538-005-9047-7
34 LI Jianquan , LI Yiqun , YANG Yali , et al. Epidemic characteristics of two classic models and the dependence on the initial conditions[J]. Mathematical Biosciences and Engineering, 2016, 13 (5): 999- 1010.
doi: 10.3934/mbe.2016027
35 LI Jianquan , LOU Yajian . Characteristics of an epidemic outbreak with a large initial infection size[J]. Journal of Biological Dynamics, 2016, 10 (1): 366- 378.
doi: 10.1080/17513758.2016.1205223
36 CHEN Yan , SONG Haitao , LIU Shengqiang . Evaluations of COVID-19 epidemic models with multiple susceptible compartments using exponential and non-exponential distribution for disease stag[J]. Infectious Disease Modelling, 2022, 7, 795- 810.
doi: 10.1016/j.idm.2022.11.004
37 DOLBEAULT J , TURINICI G . Heterogeneous social interactions and the COVID-19 lockdown outcome in a multi-group SEIR model[J]. Mathematical Modelling of Natural Phenomena, 2020, 15, 36.
doi: 10.1051/mmnp/2020025
38 LIU Shengqiang , WANG Shengkai , WANG Lin . Global dynamics of delay epidemic models with nonlinear incidence rate and relapse[J]. Nonlinear Analysis(Real World Applications), 2011, 12, 119- 127.
doi: 10.1016/j.nonrwa.2010.06.001
39 RUAN Shigui , WANG Wendi . Dynamical behavior of an epidemic model with nonlinear incidence rate[J]. Journal of Differential Equations, 2003, 188 (1): 135- 163.
doi: 10.1016/S0022-0396(02)00089-X
40 HETHCOTE H W , DRIESSCHE P . Some epidemiological models with nonlinear incidence[J]. Journal of Mathematical Biology, 1991, 29 (3): 271- 287.
doi: 10.1007/BF00160539
41 ANDERSON R M , MAY R M . Population biology of infectious diseases Ⅰ[J]. Nature, 1979, 180, 361- 367.
42 ANDERSON R M , MAY R M . Infectious diseases of humans, dynamics and control[M]. Oxford: Oxford University Press, 1992.
43 COOKE K L , VAN DEN DRIESSCHE P . Analysis of an SEIRS epidemic model with two delays[J]. Journal of Mathematical Biology, 1996, 35 (2): 240- 260.
doi: 10.1007/s002850050051
44 WANG Wendi . Global behavior of an SEIRS epidemic model with time delays[J]. Applied Mathematics Letters, 2002, 15 (4): 423- 428.
doi: 10.1016/S0893-9659(01)00153-7
45 HUI J , CHEN L . Impulsive vaccination of SIR epidemic models with nonlinear incidence rates[J]. Discrete and Continuous Dynamical Systems(Series B), 2004, 3 (4): 595- 605.
46 MAY R M , ANDERSON R M . Regulation and stability of host-parasite population interactions Ⅱ: destabilizing process[J]. Journal of Animal Ecology, 1978, 47, 219- 267.
doi: 10.2307/3933
47 DIEKMANN O , HEESTERBEEK J A P , METZ J A J . On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations[J]. Journal of Mathematical Biology, 1990, 28, 365- 382.
48 BLACKWOOD J C , CHILDS L M . An introduction to compartmental modeling for the budding infectious disease modeler[J]. Letters in Biomathematics, 2018, 5, 195- 221.
doi: 10.30707/LiB5.1Blackwood
49 VAN DEN DRIESSCHE P , WATMOUGH J . Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Mathematical Biosciences, 2002, 180, 29- 48.
doi: 10.1016/S0025-5564(02)00108-6
50 DIEKMANN O , HEESTERBEEK J A P , ROBERTS M G . The construction of next-generation matrices for compartmental epidemic models[J]. Journal of the Royal Society Interface, 2009, 7 (47): 873- 885.
51 FENG Zhilan . Final and peak epidemic sizes for SEIR models with quarantine and isolation[J]. Mathematical Biosciences and Engineering, 2007, 4 (4): 675- 686.
doi: 10.3934/mbe.2007.4.675
52 BLACKWOOD J C , CHILDS L M . An introduction to compartmental modeling for the budding infectious disease modeler[J]. Letters in Biomathematics, 2018, 5 (1): 195- 221.
doi: 10.30707/LiB5.1Blackwood
53 BACAER N . Un modèle mathématique des débuts de l'épidémie de coronavirus en France[J]. Mathematical Modelling of Natural Phenomena, 2020, 15, 29- 30.
doi: 10.1051/mmnp/2020015
[1] 庄媛媛,张克勇. 基于SEIR模型公共卫生事件下物资分配优化研究[J]. 《山东大学学报(理学版)》, 2023, 58(3): 109-120.
[2] 王艳梅,刘桂荣. 带Markov切换的随机SIQS模型的渐近行为[J]. 《山东大学学报(理学版)》, 2022, 57(6): 84-93.
[3] 焦战,靳祯. 空间异质的非局部扩散SI传染病模型的动力学[J]. 《山东大学学报(理学版)》, 2022, 57(11): 70-77.
[4] 张钰倩,张太雷. 具有复发效应的SEAIR模型及在新冠肺炎传染病中的应用[J]. 《山东大学学报(理学版)》, 2022, 57(1): 56-68.
[5] 陈璐,张晓光. 一类自适应网络上的传染病模型研究[J]. 《山东大学学报(理学版)》, 2019, 54(9): 76-82.
[6] 李乐乐,贾建文. 具有时滞影响的SIRC传染病模型的Hopf分支分析[J]. 《山东大学学报(理学版)》, 2019, 54(1): 116-126.
[7] 张道祥,胡伟,陶龙,周文. 一类具有不同发生率的双疾病随机SIS传染病模型的动力学研究[J]. 山东大学学报(理学版), 2017, 52(5): 10-17.
[8] 史学伟,贾建文. 一类具有信息变量和等级治愈率的SIR传染病模型的研究[J]. 山东大学学报(理学版), 2016, 51(3): 51-59.
[9] 林青腾,魏凤英. 具有饱和发病率随机SIQS传染病模型的稳定性[J]. 山东大学学报(理学版), 2016, 51(1): 128-134.
[10] 武婧媛,石瑞青. 一类包含媒体报道的SEQIHRS传染病模型的分析[J]. 山东大学学报(理学版), 2016, 51(1): 115-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵君1,赵晶2,樊廷俊1*,袁文鹏1,3,张铮1,丛日山1. 水溶性海星皂苷的分离纯化及其抗肿瘤活性研究[J]. J4, 2013, 48(1): 30 -35 .
[2] 杨永伟1,2,贺鹏飞2,李毅君2,3. BL-代数的严格滤子[J]. 山东大学学报(理学版), 2014, 49(03): 63 -67 .
[3] 李敏1,2,李歧强1. 不确定奇异时滞系统的观测器型滑模控制器[J]. 山东大学学报(理学版), 2014, 49(03): 37 -42 .
[4] 罗斯特,卢丽倩,崔若飞,周伟伟,李增勇*. Monte-Carlo仿真酒精特征波长光子在皮肤中的传输规律及光纤探头设计[J]. J4, 2013, 48(1): 46 -50 .
[5] 田学刚, 王少英. 算子方程AXB=C的解[J]. J4, 2010, 45(6): 74 -80 .
[6] 霍玉洪,季全宝. 一类生物细胞系统钙离子振荡行为的同步研究[J]. J4, 2010, 45(6): 105 -110 .
[7] 廖明哲. 哥德巴赫的两个猜想[J]. J4, 2013, 48(2): 1 -14 .
[8] 赵同欣1,刘林德1*,张莉1,潘成臣2,贾兴军1. 紫藤传粉昆虫与花粉多型性研究[J]. 山东大学学报(理学版), 2014, 49(03): 1 -5 .
[9] 王开荣,高佩婷. 建立在DY法上的两类混合共轭梯度法[J]. 山东大学学报(理学版), 2016, 51(6): 16 -23 .
[10] 唐风琴1,白建明2. 一类带有广义负上限相依索赔额的风险过程大偏差[J]. J4, 2013, 48(1): 100 -106 .