《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (10): 1-12.doi: 10.6040/j.issn.1671-9352.0.2023.340
• • 下一篇
Shengqiang LIU1(),Ningjuan MA2
摘要:
研究了短时间尺度下的非线性异质性传染病模型的传播规律, 建立了具有易感异质性的多群组传染病模型峰值以及达峰时间的理论结果, 并通过数值拟合验证了模型的有效性。
中图分类号:
1 | BRAUER F , CASTILLO-CHAVEZ C . Mathematical models in population biology and epidemiology[M]. New York: Springer, 2012. |
2 |
BRADY O J , GETHING P W , BHATT S , et al. Refining the global spatial limits of dengue virus transmission by evidence-based consensus[J]. PLoS Neglected Tropical Diseases, 2012, 6 (8): 1760- 1775.
doi: 10.1371/journal.pntd.0001760 |
3 |
BHATT S , GETHING P W , BRADY O J , et al. The global distribution and burden of dengue[J]. Nature, 2013, 496 (7446): 504- 507.
doi: 10.1038/nature12060 |
4 | 马知恩, 周义仓, 吴建宏. 传染病的建模与动力学[M]. 北京: 高等教育出版社, 2009. |
MA Zhieng , ZHOU Yicang , WU Jianhong . Modeling and dynamics of infectious diseases[M]. Beijing: Higher Education Press, 2009. | |
5 | WU Hongjia. Research on data analysis and modeling of sudden major infectious diseases[D]. Tianjin: Tiangong University, 2021. |
6 | KERMACK W O , MCKENDRICK A G . A contribution to the mathematical theory of epidemics[J]. Proceedings of the Royal Society A(Mathematical, Physical and Engineering Sciences), 1927, 115 (772): 700- 721. |
7 | KERMACK W O , MCKENDRICK A G . Contributions to the mathematical theory of epidemics. Ⅱ. The problem of endemicity[J]. Proceedings of the Royal Society A(Mathematical, Physical and Engineering Sciences), 1927, 138 (834): 55- 83. |
8 |
ALLEN I J S . Some discrete-time SI, SIR and SIS epidemic models[J]. Mathematical Biosciences, 1994, 124, 83- 105.
doi: 10.1016/0025-5564(94)90025-6 |
9 |
ALLEN I J S , Burgin A M . Comparison of deterministic and stochastic SIS and SIR models in discrete time[J]. Mathematical Biosciences, 2000, 163, 1- 33.
doi: 10.1016/S0025-5564(99)00047-4 |
10 |
BRAUER F . Some simple nosocomial disease transmission models[J]. Bulletin of Mathematical Biology, 2015, 77 (3): 460- 469.
doi: 10.1007/s11538-015-0061-0 |
11 |
FENG Zhilan . Final and peak epidemic sizes for SEIR models with quarantine and isolation[J]. Mathematical Biosciences and Engineering, 2007, 4 (4): 675- 686.
doi: 10.3934/mbe.2007.4.675 |
12 |
ZHAO Shi , MUSA S S , LIN Qianying , et al. Estimating the unreported number of novel coronavirus (2019-nCoV) cases in China in the first half of January 2020: a data-driven modelling analysis of the early outbreak[J]. Journal of Clinical Medicine, 2020, 9 (2): 388.
doi: 10.3390/jcm9020388 |
13 |
LI Qun , GUAN Xuhua , WU Peng , et al. Early transmissiodynamics in Wuhan, China, of novel coronavirus—infected pneumonia[J]. New England Journal of Medicine, 2020, 382 (13): 1199- 1207.
doi: 10.1056/NEJMoa2001316 |
14 | WU J T , KATHY L , LEUNG G M . Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study[J]. Lancet(London, England), 2020, 395 (10225): 689- 697. |
15 |
TANG Biao , WANG Xian , LI Qiqn , et al. Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions[J]. Journal of Clinical Medicine, 2020, 9 (2): 462- 463.
doi: 10.3390/jcm9020462 |
16 |
SHANAFELT D W , JONES G , LIMA M , et al. Forecasting the 2001 foot-and-mouth disease epidemic in the UK[J]. Ecohealth, 2018, 15 (2): 338- 347.
doi: 10.1007/s10393-017-1293-2 |
17 |
WONG N S , LEE S S , MITCHELL KM , et al. Impact of pre-event testing and quarantine on reducing the risk of COVID-19 epidemic rebound: a modelling study[J]. BMC Infectious Diseases, 2022, 22 (1): 83.
doi: 10.1186/s12879-021-06963-2 |
18 |
SUN Ruoyan , SHI Junping . Global stability of multigroup epidemic model with group mixing and nonlinear incidence rates[J]. Applied Mathematics and Computation, 2011, 218 (2): 280- 286.
doi: 10.1016/j.amc.2011.05.056 |
19 | MUROYA Y , ENATSU Y , LI H X . A note on the global stability of an SEIR epidemic model with constant latency time and infectious period[J]. Discrete and Continuous Dynamical Systems(Series B), 2012, 18 (1): 173- 183. |
20 | CHEN Xiaodan D , CUI Renhao . Global stability in a diffusive cholera epidemic model with nonlinear incidence[J]. Applied Mathematics Letters, 2020, 111, 106596. |
21 |
WANG Xinxin , LIU Shengqiang , WANG Lin , et al. An epidemic patchy model with entry-exit screening[J]. Bulletin of Mathematical Biology, 2015, 77 (7): 1237- 1255.
doi: 10.1007/s11538-015-0084-6 |
22 |
FOY H M , COONEY M K , ALLAN I . Longitudinal studies of types A and B influenza among Seattle school children and families[J]. Journal of Infectious Diseases, 1976, 134 (4): 362- 369.
doi: 10.1093/infdis/134.4.362 |
23 |
LOEB M , RUSSELL M L , MOSS L , et al. Effect of influenza vaccination of children on infection rates in Hutterite communities: a randomized trial[J]. Journal of the American Medical Association, 2010, 303 (10): 943- 950.
doi: 10.1001/jama.2010.250 |
24 |
MUROYA Y , ENATSUB Y , KUNIYA T . Global stability for a multi-group SIRS epidemic model with varying population sizes[J]. Nonlinear Analysis(Real World Applications), 2013, 14 (3): 1693- 1704.
doi: 10.1016/j.nonrwa.2012.11.005 |
25 |
WANG Jinliang , WANG Jing , KUNIYA T . Analysis of an age-structured multi-group heroin epidemic model[J]. Applied Mathematics and Computation, 2019, 347, 78- 100.
doi: 10.1016/j.amc.2018.11.012 |
26 |
WANG Xia , WU Huilin , TANG Sanyi . Assessing age-specific vaccination strategies and post-vaccination reopening policies for COVID-19 Control Using SEIR modeling approach[J]. Bulletin of Mathematical Biology, 2022, 84 (10): 108- 120.
doi: 10.1007/s11538-022-01064-w |
27 | BRAUER F . Early estimates of epidemic final sizes[J]. Journal of Biological Dynamics, 2018, 13 (SI): 23- 30. |
28 | BRAUER F . The final size of a serious epidemic[J]. Bulletin of Mathematical Biology, 2018, 81 (3): 869- 877. |
29 | CUI Jingan , ZHANG Yannan , FENG Zhilan . Influence of non-homogeneous mixing on final epidemic size in a meta-population model[J]. Journal of Biological Dynamics, 2018, 13 (SI): 31- 46. |
30 |
ARINO J , BRAUER F , VAN DEN DRIESSCHE P , et al. Simple models for containment of a pandemic[J]. Journal of the Royal Society Interface, 2006, 3 (8): 453- 457.
doi: 10.1098/rsif.2006.0112 |
31 |
ARINO J , BRAUER F , VAN DEN DRIESSCHE P , et al. A final size relation for epidemic models[J]. Mathematical Biosciences and Engineering, 2007, 4 (2): 159- 175.
doi: 10.3934/mbe.2007.4.159 |
32 |
BRAUER F . The Kermack-McKendrick epidemic model revisited[J]. Mathematical Biosciences, 2005, 198 (2): 119- 131.
doi: 10.1016/j.mbs.2005.07.006 |
33 |
MA J , EARN D J D . Generality of the final size formula for an epidemic of a newly invading infectious disease[J]. Bulletin of Mathematical Biology, 2006, 68 (3): 679- 702.
doi: 10.1007/s11538-005-9047-7 |
34 |
LI Jianquan , LI Yiqun , YANG Yali , et al. Epidemic characteristics of two classic models and the dependence on the initial conditions[J]. Mathematical Biosciences and Engineering, 2016, 13 (5): 999- 1010.
doi: 10.3934/mbe.2016027 |
35 |
LI Jianquan , LOU Yajian . Characteristics of an epidemic outbreak with a large initial infection size[J]. Journal of Biological Dynamics, 2016, 10 (1): 366- 378.
doi: 10.1080/17513758.2016.1205223 |
36 |
CHEN Yan , SONG Haitao , LIU Shengqiang . Evaluations of COVID-19 epidemic models with multiple susceptible compartments using exponential and non-exponential distribution for disease stag[J]. Infectious Disease Modelling, 2022, 7, 795- 810.
doi: 10.1016/j.idm.2022.11.004 |
37 |
DOLBEAULT J , TURINICI G . Heterogeneous social interactions and the COVID-19 lockdown outcome in a multi-group SEIR model[J]. Mathematical Modelling of Natural Phenomena, 2020, 15, 36.
doi: 10.1051/mmnp/2020025 |
38 |
LIU Shengqiang , WANG Shengkai , WANG Lin . Global dynamics of delay epidemic models with nonlinear incidence rate and relapse[J]. Nonlinear Analysis(Real World Applications), 2011, 12, 119- 127.
doi: 10.1016/j.nonrwa.2010.06.001 |
39 |
RUAN Shigui , WANG Wendi . Dynamical behavior of an epidemic model with nonlinear incidence rate[J]. Journal of Differential Equations, 2003, 188 (1): 135- 163.
doi: 10.1016/S0022-0396(02)00089-X |
40 |
HETHCOTE H W , DRIESSCHE P . Some epidemiological models with nonlinear incidence[J]. Journal of Mathematical Biology, 1991, 29 (3): 271- 287.
doi: 10.1007/BF00160539 |
41 | ANDERSON R M , MAY R M . Population biology of infectious diseases Ⅰ[J]. Nature, 1979, 180, 361- 367. |
42 | ANDERSON R M , MAY R M . Infectious diseases of humans, dynamics and control[M]. Oxford: Oxford University Press, 1992. |
43 |
COOKE K L , VAN DEN DRIESSCHE P . Analysis of an SEIRS epidemic model with two delays[J]. Journal of Mathematical Biology, 1996, 35 (2): 240- 260.
doi: 10.1007/s002850050051 |
44 |
WANG Wendi . Global behavior of an SEIRS epidemic model with time delays[J]. Applied Mathematics Letters, 2002, 15 (4): 423- 428.
doi: 10.1016/S0893-9659(01)00153-7 |
45 | HUI J , CHEN L . Impulsive vaccination of SIR epidemic models with nonlinear incidence rates[J]. Discrete and Continuous Dynamical Systems(Series B), 2004, 3 (4): 595- 605. |
46 |
MAY R M , ANDERSON R M . Regulation and stability of host-parasite population interactions Ⅱ: destabilizing process[J]. Journal of Animal Ecology, 1978, 47, 219- 267.
doi: 10.2307/3933 |
47 | DIEKMANN O , HEESTERBEEK J A P , METZ J A J . On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations[J]. Journal of Mathematical Biology, 1990, 28, 365- 382. |
48 |
BLACKWOOD J C , CHILDS L M . An introduction to compartmental modeling for the budding infectious disease modeler[J]. Letters in Biomathematics, 2018, 5, 195- 221.
doi: 10.30707/LiB5.1Blackwood |
49 |
VAN DEN DRIESSCHE P , WATMOUGH J . Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Mathematical Biosciences, 2002, 180, 29- 48.
doi: 10.1016/S0025-5564(02)00108-6 |
50 | DIEKMANN O , HEESTERBEEK J A P , ROBERTS M G . The construction of next-generation matrices for compartmental epidemic models[J]. Journal of the Royal Society Interface, 2009, 7 (47): 873- 885. |
51 |
FENG Zhilan . Final and peak epidemic sizes for SEIR models with quarantine and isolation[J]. Mathematical Biosciences and Engineering, 2007, 4 (4): 675- 686.
doi: 10.3934/mbe.2007.4.675 |
52 |
BLACKWOOD J C , CHILDS L M . An introduction to compartmental modeling for the budding infectious disease modeler[J]. Letters in Biomathematics, 2018, 5 (1): 195- 221.
doi: 10.30707/LiB5.1Blackwood |
53 |
BACAER N . Un modèle mathématique des débuts de l'épidémie de coronavirus en France[J]. Mathematical Modelling of Natural Phenomena, 2020, 15, 29- 30.
doi: 10.1051/mmnp/2020015 |
[1] | 庄媛媛,张克勇. 基于SEIR模型公共卫生事件下物资分配优化研究[J]. 《山东大学学报(理学版)》, 2023, 58(3): 109-120. |
[2] | 王艳梅,刘桂荣. 带Markov切换的随机SIQS模型的渐近行为[J]. 《山东大学学报(理学版)》, 2022, 57(6): 84-93. |
[3] | 焦战,靳祯. 空间异质的非局部扩散SI传染病模型的动力学[J]. 《山东大学学报(理学版)》, 2022, 57(11): 70-77. |
[4] | 张钰倩,张太雷. 具有复发效应的SEAIR模型及在新冠肺炎传染病中的应用[J]. 《山东大学学报(理学版)》, 2022, 57(1): 56-68. |
[5] | 陈璐,张晓光. 一类自适应网络上的传染病模型研究[J]. 《山东大学学报(理学版)》, 2019, 54(9): 76-82. |
[6] | 李乐乐,贾建文. 具有时滞影响的SIRC传染病模型的Hopf分支分析[J]. 《山东大学学报(理学版)》, 2019, 54(1): 116-126. |
[7] | 张道祥,胡伟,陶龙,周文. 一类具有不同发生率的双疾病随机SIS传染病模型的动力学研究[J]. 山东大学学报(理学版), 2017, 52(5): 10-17. |
[8] | 史学伟,贾建文. 一类具有信息变量和等级治愈率的SIR传染病模型的研究[J]. 山东大学学报(理学版), 2016, 51(3): 51-59. |
[9] | 林青腾,魏凤英. 具有饱和发病率随机SIQS传染病模型的稳定性[J]. 山东大学学报(理学版), 2016, 51(1): 128-134. |
[10] | 武婧媛,石瑞青. 一类包含媒体报道的SEQIHRS传染病模型的分析[J]. 山东大学学报(理学版), 2016, 51(1): 115-122. |
|