您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (12): 100-110.doi: 10.6040/j.issn.1671-9352.0.2021.179

• • 上一篇    

双脉冲阶段结构的种群系统动力学特性

吕宁   

  1. 兰州财经大学信息工程学院电子商务技术与应用重点实验室, 甘肃 兰州 730000
  • 发布日期:2021-11-25
  • 作者简介:吕宁(1988— ),男,硕士,讲师,研究方向为非线性动力学. E-mail:lvning.1206@163.com
  • 基金资助:
    甘肃省科技厅自然科学基金资助项目(20JR5RA205)

Dynamics of the stage-structured population system with two kinds of pulses

LYU Ning   

  1. School of Information Engineering, Key Laboratory of Electronic Commerce Technology and Application, Lanzhou University of Finance and Economics, Lanzhou 730000, Gansu, China
  • Published:2021-11-25

摘要: 研究了具有生育脉冲和收获脉冲的阶段结构种群系统的复杂动力学特性。通过频闪映射确定系统的离散动力模型,并讨论了平衡点的存在性和稳定性,应用中心流形理论研究了平衡点的倍周期分岔。数值仿真发现,随着参数的改变一系列的倍周期分岔级联串联在一起形成Feigen-baum树联,并且在二维参数空间这些Feigen-baum树形成的周期岛拓扑是按照Stern-Brocot树排列,而不是熟悉的Farey树。

关键词: 种群系统, 倍周期分岔, 法理数, 混沌

Abstract: This paper studies the complex dynamics of the stage structure population system with birth pulse and harvest pulse. The discrete dynamical model of the system is determined by stroboscopic mapping, and the existence and stability of the equilibrium point are discussed. The central manifold theory is available to study the period-doubling bifurcation of the equilibrium point. By light of numerical simulation, it is revealed that a series of period-doubling bifurcation cascades connects together to form a Feigen-baum tree link(anti-monotonicity)with the parameters varying. What is the most interesting thing is that the topology of the periodic island formed by these Feigen-baum trees in the two-dimensional parameter space is arranged according to the Stern-Brocot tree instead of the familiar Farey tree.

Key words: population system, eriod doubling bifurcation, Farey tree, chaos

中图分类号: 

  • O441.4
[1] AGARWAL Ravi, HRISTOVA Snezhana, OREGAN Donal. Non-instantaneous impulses in differential equations[M]. Cham: Springer, 2017: 1-72.
[2] 高淑京,陈兰荪.具有生育脉冲的单种群阶段结构离散模型复杂性分析[J].大连理工大学学报,2006,46(4):611-614. GAO Shujing, CHEN Lansun. Analyses of complexities in a single-species discrete model with stage structure and birth pulses[J]. Journal of Dalian University of Technology, 2006, 46(4):611-614.
[3] BENCHOHRA Mouffak, HENDERSON Johnny, NTOUYAS Sotiris. Impulsive differential equations and inclusions[M]. New York: Hindawi Publishing Corporation, 2006.
[4] BAINOV D D, COVACHEV V. Impulsive differential equations with a small parameter[M]. Singapore: World Scientific, 1994.
[5] FREIRE J G, CABEZA C, MARTI A C, et al. Self-organization of antiperiodic oscillations[J]. The European Physical Journal Special Topics, 2014, 223(13):2857-2867.
[6] FREIRE J G, GALLAS J A C. Cyclic organization of stable periodic and chaotic pulsations in Hartleys oscillator[J]. Chaos, Solitons & Fractals, 2014, 59:129-134.
[7] BARRIO R, BLESA F, SERRANO S. Topological changes in periodicity hubs of dissipative systems[J]. Physical Review Letters, 2012, 108(21):214102.
[8] GALLAS J A C. Periodic oscillations of the forced Brusselator[J]. Modern Physics Letters B, 2015, 29(35/36):1530018.
[9] RAO X B, CHU Y D, CHANG Y X, et al. Dynamics of a cracked rotor system with oil-film force in parameter space[J]. Nonlinear Dynamics, 2017, 88(4):2347-2357.
[10] HEGEDÜS F. Topological analysis of the periodic structures in a harmonically driven bubble oscillator near Blakes critical threshold: infinite sequence of two-sided Farey ordering trees[J]. Physics Letters A, 2016, 380(9/10):1012-1022.
[11] RECH P C. Organization of the periodicity in the parameter-space of a glycolysis discrete-time mathematical model[J]. Journal of Mathematical Chemistry, 2019, 57(2):632-637.
[12] RECH P C. Nonlinear dynamics of two discrete-time versions of the continuous-time Brusselator model[J]. International Journal of Bifurcation and Chaos, 2019, 29(10):1950142.
[13] OLIVEIRA D F M, ROBNIK M, LEONEL E D. Shrimp-shape domains in a dissipative kicked rotator[J]. Chaos An Interdisciplinary Journal of Nonlinear Science, 2011, 21(4):043122.
[14] LAYEK G C, PATI N C. Organized structures of two bidirectionally coupled logistic maps[J]. Chaos An Interdisciplinary Journal of Nonlinear Science, 2019, 29(9):093104.
[15] FREIRE J G, MEUCCI R, ARECCHI F T, et al. Self-organization of pulsing and bursting in a CO2 laser with opto-electronic feedback[J]. Chaos(Woodbury, N Y), 2015, 25(9):097607.
[16] FREIRE J G, GALLAS M R, GALLAS J A C. Chaos-free oscillations[J]. EPL(Europhysics Letters), 2017, 118(3):38003.
[17] TANG S Y, CHEN L S. Density-dependent birth rate, birth pulses and their population dynamic consequences[J]. Journal of Mathematical Biology, 2002, 44(2):185-199.
[18] MA Y, LIU B, FENG W. Dynamics of a birth-pulse single-species model with restricted toxin input and pulse harvesting[J]. Discrete Dynamics in Nature and Society, 2010, 2010:142534.
[19] TAO F, LIU B. Dynamic behaviors of a single-species population model with birth pulses in a polluted environment[J]. Rocky Mountain Journal of Mathematics, 2008, 38(5):1663-1684.
[20] GAO S, CHEN L, SUN L. Optimal pulse fishing policy in stage-structured models with birth pulses[J]. Chaos, Solitons & Fractals, 2005, 25(5):1209-1219.
[21] BIER M, BOUNTIS T C. Remerging Feigenbaum trees in dynamical systems[J]. Physics Letters A, 1984, 104(5): 239-244.
[22] DAWSON S P, GREBOGI C, YORKE J A, et al. Antimonotonicity: inevitable reversals of period-doubling cascades[J]. Physics Letters A, 1992, 162(3):249-254.
[23] 陈式刚.圆映射[M].上海:上海科技教育出版社,1998. CHEN Shigang. Circle maps[M]. Shanghai: Shanghai Science and Technology Education Publishing House, 1998.
[24] BATES B, BUNDER M, TOGNETTI K. Locating terms in the Stern-Brocot tree[J]. European Journal of Combinatorics, 2010, 31(3):1020-1033.
[25] 饶晓波. 基于GPU并行计算的旋转机械系统动力学参数关联关系研究[D].兰州:兰州交通大学,2018. RAO Xiaobo. The study of parameters incidence relation about the dynamics in rotary machine system based on the GPU parallel computation[D]. Lanzhou: Lanzhou Jiaotong University, 2018.
[26] GRAHAM R L, KNUTH D E, PATASHNIK O, et al. Concrete mathematics: a foundation for computer science[J]. Computers in Physics, 1989, 3(5):106-107.
[27] BACKHOUSE R, FERREIRA J F. On Euclid’s algorithm and elementary number theory[J]. Science of Computer Programming, 2011, 76(3):160-180.
[28] RAO X B, ZHAO X P, CHU Y D, et al. The analysis of mode-locking topology in an SIR epidemic dynamics model with impulsive vaccination control: infinite cascade of Stern-Brocot sum trees[J]. Chaos, Solitons & Fractals, 2020, 139:110031.
[29] RAO X B, CHU Y D, ZHANG J G, et al. Complex mode-locking oscillations and Stern-Brocot derivation tree in a CSTR reaction with impulsive perturbations[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2020, 30(11):113117.
[30] MASELKO J, SWINNEY H L. A complex transition sequence in the Belousov-Zhabotinskii reaction[J]. Physica Scripta, 1985, T9:35-39.
[1] 朱彦兰,周伟,褚童,李文娜. 管理委托下的双寡头博弈的复杂动力学分析[J]. 《山东大学学报(理学版)》, 2021, 56(7): 32-45.
[2] 徐阳,赵春. 基于等级结构的竞争种群系统的最优控制问题[J]. 《山东大学学报(理学版)》, 2021, 56(11): 61-70.
[3] 胡永亮,雒志学,梁丽宇,冯宇星. 一类污染环境下具有扩散和年龄结构的随机单种群系统分析[J]. 《山东大学学报(理学版)》, 2019, 54(9): 62-68.
[4] 屈娟,冯玉明,李艳平,李丽. 可证明的基于扩展混沌映射的匿名多服务器身份认证协议[J]. 《山东大学学报(理学版)》, 2019, 54(5): 44-51.
[5] 曹慧荣,周伟,褚童,周洁. 政府征税与补贴Bertrand博弈模型的动力学分析[J]. 《山东大学学报(理学版)》, 2019, 54(11): 52-62.
[6] 路正玉,周伟,于欢欢,赵娜. 考虑广告溢出效应的博弈模型的动力学分析[J]. 《山东大学学报(理学版)》, 2019, 54(11): 63-70.
[7] 朱从旭,卢庆. 对结合超混沌序列和移位运算图像密码的攻击[J]. 山东大学学报(理学版), 2016, 51(5): 67-71.
[8] 王杰智, 李航, 王蕊, 王鲁, 王晏超. 一个新四维光滑四翼超混沌系统及电路实现[J]. 山东大学学报(理学版), 2015, 50(11): 104-112.
[9] 张晶, 薛冷, 崔毅, 容会, 王剑平. 基于无线传感器网络的双混沌数据加密算法建模与评价[J]. 山东大学学报(理学版), 2015, 50(03): 1-5.
[10] 杨叶红,肖剑*,马珍珍. 一个新分数阶混沌系统的同步和控制[J]. 山东大学学报(理学版), 2014, 49(2): 76-83.
[11] 张成亮1, 胡春华1, 王忠林1,2. 三系统自动切换混沌电路的设计与实现[J]. J4, 2012, 47(8): 108-113.
[12] 周燕1,2,刘培玉1,2,赵静1,2,王乾龙1,2. 基于自适应惯性权重的混沌粒子群算法[J]. J4, 2012, 47(3): 27-32.
[13] 鞠培军. 广义Lorenz系统全局稳定的充要条件及其在混沌控制中的应用[J]. J4, 2012, 47(10): 97-101.
[14] 朱从旭1,孙克辉2. 基于新型类洛伦兹吸引子的混沌同步保密通信系统[J]. J4, 2011, 46(9): 5-8.
[15] 李辉,冯四风. 基于粒子滤波参数估计的混沌保密通信系统[J]. J4, 2011, 46(9): 1-4.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!