《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (11): 95-100.doi: 10.6040/j.issn.1671-9352.0.2023.476
• • 上一篇
夏旭,陈文静*
XIA Xu, CHEN Wenjing*
摘要: 设Λψ=(A NM B)(0,ψ)是有一个双模同态为零的Morita环,其中A,B都是诺特环,N是A-B-双模,M是B-A-双模,且ψ:NBM→A是A-A-双模同态,给出了Λψ-模是强Gorenstein投射模的充分条件。
中图分类号:
| [1] AUSLANDER M, BRIDGER M. Stable module theory[M]. Providence: American Mathematical Society, 1969:94. [2] ENOCHS E E, JENDA O M G. Gorenstein injective and projective modules[J]. Mathematische Zeitschrift, 1995, 220(4):611-633. [3] ENOCHS E E, JENDA O M G. Relative homological algebra[M]. Berlin: Walter De Gruyter, 2000. [4] HOLM H. Gorenstein homological dimensions[J]. Journal of Pure and Applied Algebra, 2004, 189(1/3):167-193. [5] BENNIS D, MAHDOU N. Strongly Gorenstein projective, injective, and flat modules[J]. Journal of Pure and Applied Algebra, 2007, 210(2):437-445. [6] BASS H. The Morita theorems, mimeographed notes[M]. Oregon: University of Oregon, 1962. [7] GREEN E L. On the representation theory of rings in matrix form[J]. Pacific Journal of Mathematics, 1982, 100(1):123-138. [8] GAO Nan, PSAROUDAKIS C. Gorenstein homological aspects of monomorphism categories via Morita rings[J]. Algebras and Representation Theory, 2017, 20(2):487-529. [9] GUO Qianqian, XI Changchang. Gorenstein projective modules over rings of Morita contexts[J]. Science China Mathematics, 2023, 66, https://doi.org/10.1007/s11425-022-2206-8. [10] GREEN E L, PSAROUDAKIS C. On Artin algebras arising from Morita contexts[J]. Algebras and Representation Theory, 2014, 17(5):1485-1525. |
| [1] | 陈文静,高文. Morita环上的Gorenstein FP-内射模[J]. 《山东大学学报(理学版)》, 2024, 59(4): 9-15. |
| [2] | 谭进,狄振兴. Morita环上的强Ding投射模[J]. 《山东大学学报(理学版)》, 2023, 58(2): 58-62. |
|
||