《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (11): 115-121.doi: 10.6040/j.issn.1671-9352.0.2023.391
• • 上一篇
周建国1,刘雨喆1*,章超1,张亚峰2
ZHOU Jianguo1, LIU Yuzhe1*, ZHANG Chao1, ZHANG Yafeng2
摘要: 对于一个定义在代数闭域k上的有限维k-代数Λ,如果Λ是合冲有限的,则利用它是n-Igusa-Todorov代数,可知其有限维数有限。利用一类Nakayama代数的包络代数来指出该命题的逆不成立,即存在有限维数有限的代数,其合冲无限。
中图分类号:
| [1] HOSHINO M. Algebras of finite self-injective dimension[J]. P Am Math Soc, 1991, 112(3):619-622. [2] BASS H. Finitistic dimension and a homological generalization of semi-primary rings[J]. T Am Math Soc, 1960, 95(3):466-488. [3] AUSLANDER M, BUCHSBAUM D A. Homological dimension in local rings[J]. Transactions of the American Mathematical Society, 1957, 85(2):390-405. [4] SERRE J P. Sur la dimension homologique des anneaux et des modules noethériens[C] // Proceedings of the international symposium on algebraic number theory. Tokyo & Nikko: [s. n.] , 1955:175-189. [5] EILENBERG S. Algebras of cohomologically finite dimension [J]. Commentarii Mathematici Helvetici, 1954, 28(1):310-319. [6] HOLM T. Cartan determinants for gentle algebras [J]. Archiv Der Mathematik, 2005, 85(3):233-239. [7] ASSEM I, SIMSON D, SKOWRONSKI A. Elements of the representation theory of associative algebras: volume 1, techniques of representation theory[M]. New York: Cambridge University Press, 2006. [8] HAPPEL D. On the derived category of a finite-dimensional algebra[J]. Commentarii Mathematici Helvetici, 1987, 62(1):339-389. [9] AUSLANDER M, REITEN I. On a generalized version of the nakayama conjecture[J]. Proceedings of the American Mathematical Society, 1975, 52(1):69-74. [10] COLBY R R, FULLER K R. A note on the nakayama conjectures[J]. Tsukuba Journal of Mathematics, 1990, 14(2):343-352. [11] HUISGEN B Z. The finitistic dimension conjectures—a tale of 3.5 decades[M] //Abelian Groups and Modules. Dordrecht: Springer Netherlands, 1995:501-517. [12] HAPPEL D. On gorenstein algebras[M] //Representation Theory of Finite Groups and Finite-Dimensional Algebras. Basel: Birkhäuser, 1991:389-404. [13] BELIGIANNIS A. On algebras of finite Cohen-Macaulay type[J]. Advances in Mathematics, 2011, 226(2):1973-2019. [14] REITEN I, GEISS C. Gentle algebras are Gorenstein[C] //Representations of Algebras and Related Topics, Proceedings of the 10th International Conference.Toronto: Fields Institute for Research in Mathematical Sciences, 2005:129-133. [15] GREEN E L, KIRKMAN E, KUZMANOVICH J. Finitistic dimensions of finite dimensional monomial algebras[J]. Journal of Algebra, 1991, 136(1):37-50. [16] MOCHIZUKI H. Finitistic global dimension for rings[J]. Pacific Journal of Mathematics, 1965, 15(1):249-258. [17] WEI J Q. Finitistic dimension and igusa-todorov algebras[J]. Advances in Mathematics, 2009, 222(6):2215-2226. [18] LIU Y Z, GAO H P, HUANG Z Y. Homological dimensions of gentle algebras via geometric models[J]. Science China Mathematics, 2024, 67:733-766. [19] HERSCHEND M. Solution to the Clebsch-Gordan problem for representations of quivers of type (~overA)n[J]. Journal of Algebra and Its Applications, 2005, 4(5):481-488. [20] HERSCHEND M. Galois coverings and the Clebsch-Gordan problem for quiver representations[J]. Colloquium Mathematicum, 2007, 109(2):193-215. [21] HERSCHEND M. Tensor products on quiver representations[J]. Journal of Pure and Applied Algebra, 2008, 212(2):452-469. [22] 刘雨喆, 张亚峰. A型代数的多重张量代数表示有限的充分必要条件[J]. 中国科学: 数学, 2024, 54(1):25-38. LIU Yuzhe, ZHANG Yafeng. Sufficient and necessary conditions for the multiple tensors of algebras of type A to be representation-finite[J]. Scientia Sinica Mathematia, 2024, 54(1):25-38. [23] MAHDOU N, TAMEKKANTE M. On Gorenstein global dimension of tensor product of algebras over a field[J]. Gulf Journal of Mathematics, 2015, 3(2):30-37. [24] WALD B, WASCHBÜSCH J. Tame biserial algebras[J]. Journal of Algebra, 1985, 95(2):480-500. |
| [1] | 王茜,姚海楼. 粘合中Abel范畴的小有限维数[J]. 《山东大学学报(理学版)》, 2025, 60(11): 42-47. |
| [2] | 孙情,杨刚. 线性箭图的Gorenstein AC-表示[J]. 《山东大学学报(理学版)》, 2023, 58(8): 48-56. |
| [3] | 李诗雨,陈晨,陈惠香. 二维非Abel李代数包络代数Ore扩张的不可约表示[J]. 《山东大学学报(理学版)》, 2022, 57(12): 75-80. |
| [4] | 热比古丽·吐尼亚孜, 阿布都卡的·吾甫. 量子包络代数Uq(An)的Gelfand-Kirillov维数[J]. 山东大学学报(理学版), 2017, 52(10): 12-17. |
|
||