JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2015, Vol. 50 ›› Issue (03): 67-72.doi: 10.6040/j.issn.1671-9352.0.2014.090

Previous Articles     Next Articles

A nonlinear mixed boundary value problem for singularly perturbed forth-order differential equation

CHEN Wen, YAO Jing-sun, YANG Xue-jie   

  1. College of Mathematics and Computer Science, Anhui Normal University, Wuhu 241003, Anhui, China
  • Received:2014-03-21 Revised:2014-09-30 Online:2015-03-20 Published:2015-03-13

Abstract: A singularly perturbed boundary value problem for forth-order nonlinear differential equation with nonlinear mixed boundary condition is studied. The formal asymptotic solution is constructed by using the composite expansion method. According to the theory of differential inequalities, the existence of solution for the problem is proved and the error estimate of asymptotic solution is given.

Key words: forth-order differential equation, composite expansion method, singular perturbation, the theory of differential inequality

CLC Number: 

  • O175.14
[1] 吴有萍, 姚静荪, 庄红艳. 一类具非线性边值条件的双参数奇摄动问题[J]. 高校应用数学学报, 2011, 26(3):288-294. WU Youping, YAO Jingsun, ZHUANG Hongyan. A class of singularly perturbed problem with two parameters and nonlinear boundary value conditions[J]. Applied Mathematics A Journal of Chinese Universities, 2011, 26(3):288-294.
[2] 刘燕, 姚静荪. 一类高阶方程的非线性边界条件的奇摄动问题[J]. 高校应用数学学报, 2012, 27(2):175-181. LIU Yan, YAO Jingsun. A class of singular perturbed problems with nonlinear boundary value conditions for higher order equations[J]. Applied Mathematics A Journal of Chinese Universities, 2012, 27(2):175-181.
[3] YAO Jingsun. Asymptotic solution of the three points boundary value problem for nonlinear third-order equation[J]. Mathematica Applicata, 2009, 22(2):437-442.
[4] 莫嘉琪. 四阶非线性微分方程边值问题的奇摄动[J]. 安徽师范大学学报: 自然科学版, 1987(01):110. MO Jiaqi. Singular perturbation of boundary value problems for fourth order nonlinear differential equations[J]. Journal of Anhui Normal University: Natural Science, 1987(01):110.
[5] MO Jiaqi, LIU Shude. A class of nonlinear singularly perturbed problems of fourth order[J]. Chinese Quarterly Journal of Mathematics, 1997, 12(1):35-37.
[6] 王秀群, 倪守平. 四阶微分方程三点边值问题的奇摄动[J]. 数学物理学报, 2002, 22A(1):41-47. WANG Xiuqun, NI Shouping. Singular perturbation of three-pointed boundary value problems for fourth order differential equations[J]. ACTA Mathematica Scientia, 2002, 22A(1):41-47.
[7] OMALLEY R E. Introduction to singular perturbations[M]. New York: Academic Press, 1974.
[8] 占小丽, 余赞平, 周哲彦. 两类带非线性混合边界条件的四阶微分方程三点边值问题[J]. 福建师范大学学报: 自然科学版, 2013, 29(1):15-19. ZHAN Xiaoli, YU Zanping, ZHOU Zheyan. Two classes of three-point boundary value problems for forth-order differential equations with nonlinear and boundary conditions[J]. Journal of Fujian Normal University: Natural Science, 2013, 29(1):15-19.
[1] YANG Xue-jie, SUN Guo-zheng*, CHEN Wen. Shock solution for a quasilinear singularly perturbed problem#br# [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(04): 79-83.
[2] DING Hai-yun1,2, NI Ming-kang1,3. Weak nonlinear singular perturbed boundary value problems with discontinous source terms [J]. J4, 2012, 47(2): 8-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!