JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2015, Vol. 50 ›› Issue (03): 67-72.doi: 10.6040/j.issn.1671-9352.0.2014.090
Previous Articles Next Articles
CHEN Wen, YAO Jing-sun, YANG Xue-jie
CLC Number:
[1] 吴有萍, 姚静荪, 庄红艳. 一类具非线性边值条件的双参数奇摄动问题[J]. 高校应用数学学报, 2011, 26(3):288-294. WU Youping, YAO Jingsun, ZHUANG Hongyan. A class of singularly perturbed problem with two parameters and nonlinear boundary value conditions[J]. Applied Mathematics A Journal of Chinese Universities, 2011, 26(3):288-294. [2] 刘燕, 姚静荪. 一类高阶方程的非线性边界条件的奇摄动问题[J]. 高校应用数学学报, 2012, 27(2):175-181. LIU Yan, YAO Jingsun. A class of singular perturbed problems with nonlinear boundary value conditions for higher order equations[J]. Applied Mathematics A Journal of Chinese Universities, 2012, 27(2):175-181. [3] YAO Jingsun. Asymptotic solution of the three points boundary value problem for nonlinear third-order equation[J]. Mathematica Applicata, 2009, 22(2):437-442. [4] 莫嘉琪. 四阶非线性微分方程边值问题的奇摄动[J]. 安徽师范大学学报: 自然科学版, 1987(01):110. MO Jiaqi. Singular perturbation of boundary value problems for fourth order nonlinear differential equations[J]. Journal of Anhui Normal University: Natural Science, 1987(01):110. [5] MO Jiaqi, LIU Shude. A class of nonlinear singularly perturbed problems of fourth order[J]. Chinese Quarterly Journal of Mathematics, 1997, 12(1):35-37. [6] 王秀群, 倪守平. 四阶微分方程三点边值问题的奇摄动[J]. 数学物理学报, 2002, 22A(1):41-47. WANG Xiuqun, NI Shouping. Singular perturbation of three-pointed boundary value problems for fourth order differential equations[J]. ACTA Mathematica Scientia, 2002, 22A(1):41-47. [7] OMALLEY R E. Introduction to singular perturbations[M]. New York: Academic Press, 1974. [8] 占小丽, 余赞平, 周哲彦. 两类带非线性混合边界条件的四阶微分方程三点边值问题[J]. 福建师范大学学报: 自然科学版, 2013, 29(1):15-19. ZHAN Xiaoli, YU Zanping, ZHOU Zheyan. Two classes of three-point boundary value problems for forth-order differential equations with nonlinear and boundary conditions[J]. Journal of Fujian Normal University: Natural Science, 2013, 29(1):15-19. |
[1] | YANG Xue-jie, SUN Guo-zheng*, CHEN Wen. Shock solution for a quasilinear singularly perturbed problem#br# [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(04): 79-83. |
[2] | DING Hai-yun1,2, NI Ming-kang1,3. Weak nonlinear singular perturbed boundary value problems with discontinous source terms [J]. J4, 2012, 47(2): 8-13. |
|