JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2014, Vol. 49 ›› Issue (10): 78-82.doi: 10.6040/j.issn.1671-9352.0.2014.105
Previous Articles Next Articles
LI Ling-qiang1,2, LI Qing-guo1
CLC Number:
[1] PAWLAK Z. Rough set[J]. International Journal of Computer and Information Sciences, 1982, 11(5):341-356. [2] YAO Yiyu. Relational Interpretations of neighborhood operators and rough set approximations operators[J]. Information Science, 1998, 111:239-259. [3] 林国平,李进金,陈锦坤. 覆盖广义粗糙集的一般化方法[J]. 山东大学学报:理学版, 2012, 47(1):83-86. LIN Guoping, LI Jinjin, CHEN Jinkun. Generalization for covering generalized rough sets [J]. Journal of Shandong University: Natural Science, 2012, 47(1):83-86. [4] ZHU W. Relationship between generalized rough sets based on binary relation and covering[J]. Information Sciences, 2009, 179:210-225. [5] LIU Guilong. Generalized rough sets over fuzzy lattices[J]. Information Sciences, 2008, 178:1651-1662. [6] SHE Yanhong, WANG Guojun. An axiomatic approach of fuzzy rough sets based on residuated lattices[J]. Computers and Mathematics with Applications, 2009, 58:189-201. [7] HAO Jing, LI Qingguo. The relationship between L-fuzzy rough set and L-topology[J]. Fuzzy Sets and Systems, 2011, (178):74-83. [8] 李令强,金秋,孙守斌,等. 多值近似空间的上下近似诱导的拓扑结构[J].系统科学与数学, 2012,32(2):226-236. LI Lingqiang, JIN Qiu, SUN Shoubin, et al. The topological structures induced by upper and lower approximations of many-valued approximation spaces[J]. Journal of Systems Science and Mathematics Science, 2012, 32(2):226-236. [9] MA Zhenming, HU Baoqing. Topological and lattice structures of L-fuzzy rough sets determined by lower and upper sets[J]. Information Sciences, 2013, 218:194--204. [10] MI Jusheng, ZHANG Wenxiu. An axiomatic characterization of a fuzzy generalization of rough sets[J]. Information Sciences, 2004, 160:235-249. [11] LIU Guilong. Axiomatic systems for rough sets and fuzzy rough sets[J]. International Journal of Approximate Reasoning, 2008, 48:857-867. [12] LIU Guilong. Using one axiom to characterize rough set and fuzzy rough set approximations[J].Information Sciences, 2013, 223:285-296. [13] Hjek P. Metamathematics of fuzzy logic[M]. Dordrecht: Kluwer Academic Publishers, 1998. |
[1] | MA Hai-cheng, LI Sheng-gang. The digraphs representation of finite topologies [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 100-104. |
[2] | YU Yue,MENG Guang-wu . A note on ultra separation axioms of L-topological spaces [J]. J4, 2008, 43(2): 44-47 . |
[3] | ZHAO Mei-xiang, . [0,1]-fuzzy separation axioms [J]. J4, 2007, 42(11): 98-100 . |
[4] | ZHAO Mei-xiangsup>,HU Kai,MENG Guang-wu . Bifuzzy separation axioms(Ⅱ) [J]. J4, 2006, 41(4): 44-47 . |
|