JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2015, Vol. 50 ›› Issue (04): 8-13.doi: 10.6040/j.issn.1671-9352.0.2014.240

Previous Articles     Next Articles

Lifetime distribution behavior of discrete open censored δ-shock model

YE Jian-hua, MA Ming   

  1. School of Computer Science and Information Engineering, Northwest University for Nationalities, Gansu 730030, Lanzhou, China
  • Received:2014-05-24 Revised:2014-12-31 Online:2015-04-20 Published:2015-04-17

Abstract: The δ-shock model is an important shock model in reliability theory which has potential applications in various fields such as insurance, traffic and relationship marketing. The discrete open censored δ-shock model was presented. The lifetime behavior of the discrete open censored δ-shock model that shock interarrival times follow lattice distribution was studied. And the probability distribution and the expectation of the system lifetime were obtained for all the failure critical values. In particular, as a corollary, the lifetime distribution was obtained when the interarrival times follow a geometric distribution, i.e. the binomial process.

Key words: discrete, open censored, δ-shock model, lattice distribution

CLC Number: 

  • O213.2
[1] 李泽慧.与Poisson流有关的几个概率分布及其在城市交通拥挤问题中的应用[J]. 兰州大学学报:自然科学版,1984,S1:127-136. LI Zehui. Some distributions related to Poisson processes and their application in solving the problem of traffic jam[J]. Journal of Lanzhou University: Natural Sciences, 1984, S1:127-136.
[2] 李泽慧,黄宝胜,王冠军.一种冲击源下冲击模型的寿命分布及其性质[J]. 兰州大学学报:自然科学版,1999,35(4):1-7. LI Zehui, HUANG Baosheng, WANG Guanjun. Life distribution and its properties of shock models under random shocks[J]. Journal of Lanzhou University: Natural Sciences, 1999, 35(4):1-7.
[3] 李泽慧,白建明,孔新兵.冲击模型的研究进展[J]. 质量与可靠性,2005(3):31-36. LI Zehui, BAI Jianming, KONG Xinbing, et al. Progress of research on shock models[J]. Quality and Reliability, 2005(3):31-36.
[4] 李泽慧,白建明,孔新兵.冲击模型:进展与应用[J]. 数学进展,2007,36(4):385-397. LI Zehui, BAI Jianming, KONG Xingbing. Shock models: advances and applications[J]. Advances in Mathematics China, 2007, 36(4):385-397.
[5] 梁小林, 李泽慧.对偶δ-冲击模型的最优更换策略[C]//中国现场统计研究会第12届学术年会论文集.北京:[s.n.], 2005:211-214. LIANG Xiaolin, LI Zehui. Optimal replacement policy of antithetic δ shock model[C]//Proceedings of the 12th Symposium of Chinese Field Statistical Research. Beijing:[s.n.], 2005:211-214.
[6] TANG Yayong, LAM Yeh. A δ-shock maintenance model for a deteriorating system[J]. European Journal of Operational Research, 2006, 168(2):541-556.
[7] BAI Jianming, LI Zehui, KONG Xingbing. Generalized shock models based on a cluster point process[J]. IEEE Transactions on Reliability, 2006, 55(3):542-550.
[8] 唐亚勇,林埜.退化系统的对数正态δ冲击维修模型(英文)[J]. 四川大学学报:自然科学版,2006,43(1):59-65. TANG Yayong, Lam Yeh. A lognormal δ shock maintenance model for a deteriorating system (in English)[J]. Journal of Sichuan University: Natural Science Edition, 2006, 43(1):59-65.
[9] LI Zehui, KONG Xingbing. Life behavior of δ-shock model[J]. Statistics & Probability Letters, 2007, 77(6):577-587.
[10] LI Zehui, ZHAO Peng. Reliability analysis on the δ-shock model of complex systems[J]. IEEE Transactions on Reliability, 2007, 56(2):340-348.
[11] 梁小林,李泽慧.可修系统的最优更换策略[J]. 湖南师范大学自然科学学报,2007,30(4):15-18. LIANG Xiaolin, LI Zehui. Optimal replacement policies for repairable system[J]. Journal of Natural Science of Hunan Normal University, 2007, 30(4):15-18.
[12] 唐风琴,李泽慧.时倚泊松过程下的对偶δ-冲击模型[J]. 兰州大学学报:自然科学版,2007,43(4):1-4. TANG Fengqin, LI Zehui. Dual δ-shock models under time-dependent Poisson process[J]. Journal of Lanzhou University:Natural Sciences, 2007, 43(4):1-4.
[13] 李泽慧,刘志,牛一.一般δ-冲击模型中无失效数据的Bayes统计推断[J]. 应用概率统计,2007,23(1):51-58. LI Zehui, LIU Zhi, NIU Yi. Bayes statistical inference on general δ-shock model with zero failure data[J]. Chinese Journal of Applied Probability, 2007, 23(1):51-58.
[14] 梁小林,李泽慧.遭受外部冲击的检测模型[J]. 湖南大学学报:自然自科版,2008, 35(2):66-69. LIANG Xiaolin, LI Zehui. Random inspection model subject to external shocks[J]. Journal of Hunan University: Natural Sciences, 2008, 35(2):66-69.
[15] 马明.δ冲击模型寿命分布的积分计算及M函数的性质[J]. 山东大学学报:理学版,2008,43(12):15-19. MA Ming. Computation of the integral of lifetime distribution in δ-shock model and properties of M function[J]. Journal of Shandong University: Naturnal Science, 2008, 43(12):15-19.
[16] 马明.自激滤过的泊松过程[J]. 吉林大学学报:自然科学版,2009,47(4):711-715. MA Ming. Self-exciting filtered Poisson process[J]. Journal of Jilin University: Science Edition, 2009, 47(4):711-715.
[17] 魏艳华,王丙参. δ冲击模型及随机检测[J]. 北京联合大学学报:自然科学版,2011,25(1):89-92. WEI Yanhua, WANG Bingcan. δ shock model and random inspection[J]. Journal of Beijing Union University: Natural Sciences, 2011, 25(1):89-92.
[18] Serkan Eryilmaz. On the lifetime behavior of discrete time shock model[J]. Journal of Computational and Applied Mathematics, 2013, 237(1):384-388.
[19] 冶建华,马明,赵芬芬,等,离散δ冲击模型的寿命性质[J]. 西北民族大学学报:自然科学版,2012,33(3):1-4. YE Jianhua, MA Ming, ZHAO Fenfen, et al. Lifetime properties of discrete δ shock model[J]. Journal of Northwest University for Nationalities: Natural Science, 2012, 33(3):1-4.
[20] 何雪,冶建华,陈丽雅.冲击间隔服从泊松分布的离散δ冲击模型的可靠性分析[J]. 贵州师范大学学报:自然科学版,2012,30(6):65-68. HE Xue, YE Jianhua, CHEN Liya. The reliability analysis of the δ shock model based on interarrival time follows Poisson distribution[J]. Journal of Guizhou Normal University: Natural Sciences, 2012, 30(6):65-68.
[21] 张攀,马明,余进玉,等.时间点服从0-1分布的离散截断δ冲击模型的寿命性质[J]. 甘肃联合大学学报:自然科学版,2012,26(5):24-26. ZHANG Pan, MA Ming, YU Jinyu, et al. Lifetime behavior of discrete censored δ shock model on arrival times obey the 0-1 distribution[J]. Journal of Gansu Lianhe University: Natural Sciences, 2012, 26(5):24-26.
[22] 卢开澄,卢华明.组合数学[M]. 3版.北京:清华大学出版社,2002. LU Kaicheng, LU Huaming. Combinatorial mathematics[M]. 3rd ed. Beijing: Tsinghua University Press, 2002.
[1] HUANG Lei-lei, SONG Xiao-qiu, LU Wei. On polynomial stability of linear discrete-time systems in Banach spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 36-41.
[2] DIAO Qun, SHI Dong-yang. New H 1-Galerkin mixed finite element analysis for quasi-linear viscoelasticity equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 90-98.
[3] NONG Qiang, HUANG Zhen-jie, HUANG Ru-fen. Improvement of a certificateless aggregate signature scheme [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(11): 52-59.
[4] FAN Ming-zhi, WANG Fen-ling, SHI Dong-yang. High accuracy analysis of the lowest order new mixed finite element scheme for generalized nerve conductive equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(08): 78-89.
[5] LU Sheng-rong, TANG Ji-hua. Dynamic generation of stretching-shrinking data and data submerging and hiding [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(05): 40-44.
[6] WU Dai-yong, ZHANG Hai. Stability and bifurcation analysis for a single population discrete model with Allee effect and delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(07): 88-94.
[7] ZHANG Ya-dong1, LI Xin-xiang2, SHI Dong-yang3. Superconvergence analysis of a nonconforming finite element for #br# strongly damped wave equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(05): 28-35.
[8] DENG Xiong, HU Lin*, ZHAO Chuang, GAO Li-ke. Numerical simulation of direct shear tests for granular matter in 3D#br# [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 22-26.
[9] CHEN Nai-xun1, MA Shu-ping2*. Static output feedback stabilization for a class of nonlinear discrete-time descriptor Markov jump systems [J]. J4, 2013, 48(7): 93-100.
[10] SHI Yan-hua1, SHI Dong-yang2*. The quasi-Wilson nonconforming finite element approximation to  pseudo-hyperbolic equations [J]. J4, 2013, 48(4): 77-84.
[11] ZHANG Fang-guo. Elliptic curves in cryptography: past, present and future… [J]. J4, 2013, 48(05): 1-13.
[12] ZHANG Hua-ping1,2, ZHANG Jian-peng3, MA Shu-ping4, FAN Hong-da1. Robust H filter design for discrete-time singular switched systems with uncertainties and time-varying delays [J]. J4, 2012, 47(7): 59-69.
[13] XU Huai. Discrete approximation of the optimal dividend barrier in the dual risk model [J]. J4, 2012, 47(5): 115-121.
[14] WEI Li1, ZHANG Huan-shui1*, FU Min-yue2. Finite-horizon quantized estimation using sector bound approach [J]. J4, 2012, 47(1): 55-61.
[15] ZHANG Hua-ping1,2, MA Shu-ping3, FAN Hong-da1. Robust stabilization for uncertain discrete-time Markov jump descriptor systems with time-varying delays via output feedback controllers [J]. J4, 2012, 47(1): 62-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!