JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2015, Vol. 50 ›› Issue (01): 56-61.doi: 10.6040/j.issn.1671-9352.0.2014.330

Previous Articles     Next Articles

Spectroscopic study on the interaction between nC60 nanoparticles and bovine hemoglobin

YAO Yao, LIN Nan-yu, LIU Shu-fang   

  1. School of Public Health, Shandong University, Jinan 250012, Shandong, China
  • Received:2014-07-10 Revised:2014-10-29 Online:2015-01-20 Published:2015-01-24

Abstract: Several spectroscopic methods were used to study the interaction between nC60 nanoparticles and bovine hemoglobin. The nC60 nanoparticles dispersion in water was prepared by solvent replacement method and characterized using UV-Vis spectrometry, dynamic light scattering and transmission electron microscopy. The interaction between nC60 and bovine hemoglobin was investigated by UV-Vis spectrometry, fluorescence spectroscopy and synchronous fluorescence spectroscopy. The result indicated that the UV-Visible absorption spectrum of bovine hemoglobin was changed to some extent by nC60 nanoparticles. The intrinsic fluorescence of bovine hemoglobin could be quenched by nC60 and the maximum emission wavelength showed obvious blue-shift. With the increasing concentrations of nC60, the synchronous fluorescence intensity of tyrosine and tryptophan residues decreased gradually, and the fluorescence peak of tyrosine residues exhibited a blue shift while the fluorescence peak of tryptophan residues remained unchanged. The research showed that the binding of nC60to bovine hemoglobin could cause the conformation change of bovine hemoglobin. The microenvironment polarity around tyrosine residues decreased, indicating the binding site of nC60 to bovine hemoglobin was located near tyrosine residues.

Key words: fullerene, fluorescence, C60, bovine hemoglobin

CLC Number: 

  • O657.3
[1] 刘元方. 纳米材料生物效应研究和安全性评价前沿[J]. 自然杂志, 2011, 33(4):192-197.LIU Yuanfang. Frontier of nano-materials biological effect research and safety evaluation[J]. Chinese Journal of Nature, 2011, 33(4):192-197.
[2] OBERDÖRSTER E. Manufactured nanomaterials (Fuller-enes, C60) induce oxidative stress in the brain of juvenile largemouth bass[J]. Environ Health Perspect, 2004, 112(10):1058-1062.
[3] CAVA? T, CINKILIÇ N, VATAN O, et al. Effects of fullerenol nanoparticles on acetamiprid induced cytoxicity and genotoxicity in cultured human lung fibroblasts[J]. Pestic Biochem Physiol, 2014, 114:1-7.
[4] SONG Maoyong, YUAN Shaopeng, YIN Junfa, et al. Size-dependent toxicity of nano-C60 aggregates: more sensitive indication by apoptosis-related Bax translocation in cultured human cells[J]. Environ Sci Technol, 2012, 46(6):3457-3464.
[5] MAMONTOVA T V, MYKYTIUK M V, BOBROVA N O. The anti-inflammatory effect of fullerene C60 on adjuvant arthritis in rats[J]. Fiziol Zh, 2013, 59(3):102-110.
[6] KANE R S 1, STROOCK A D. Nanobiotechnology: protein-nanomaterial interactions[J]. Biotechnol Prog, 2007, 23(2):316-319.
[7] PORTER A E, GASS M, MULLER K, et al. Visualizing the uptake of C60 to the cytoplasm and nucleus of human monocyte-derived macrophage cells using energy-filtered transmission electron microscopy and electron tomography[J]. Environ Sci Technol, 2007, 41(8):3012-3017.
[8] 康峰, 卢胜明, 胡建武. 富勒烯及其衍生物动物实验的研究进展[J]. 实验动物学, 2010, 27(6):48-50.KANG Feng, LU Shengming, HU Jianwu. The progress of fullerene and its derivatives’ animal experiment research[J]. Laboratory Animal Science, 2010, 27(6):48-50.
[9] DEGUCHI S, YAMAZAKI T, MUKAI S, et al. Stabilization of C60 nanoparticles by protein adsorption and its implications for toxicity studies[J]. Chem Res Toxicol, 2007, 20(6):854-858.
[10] WU Hai, LIN Lina, WANG Po, et al. Solubilization of pristine fullerene by the unfolding mechanism of bovine serum albumin for cytotoxic application[J]. Chem Commun (Camb), 2011, 47(38):10659-10661.
[11] ROZHKOV S P, GORYUNOV A S, SUKHANOVA G A, et al. Protein interaction with hydrated C60 fullerene in aqueous solutions[J]. Biochem Biophys Res Commun, 2003, 303(2):562-566.
[12] FRIEDMAN S H, DECAMP D L, SIJBESMA R P, et al. Inhibition of the HIV-1 protease by fullerene derivatives: Model building studies and experimental verification[J]. Am Chem Soc, 1993, 115(15):6505-6509.
[13] 周秋华, 王彦卿, 张红梅, 等. 单宁酸与牛血红蛋白相互作用的光谱研究[J]. 化学研究与应用, 2008, 07(7):816-820. ZHOU Qiuhua, WANG Yanqing, ZHANG Hongmei. Spectroscopic study on the interaction between Tannic acid and bovine hemoglobin[J]. Chemical Research and Application, 2008, 07(7):816-820.
[14] 韦静, 沈星灿, 梁宏, 等. 牛血红蛋白与纳米雄黄相互作用的光谱研究[J]. 光谱学与光谱分析, 2008, 28(4):852-855.WEI Jing, SHEN Xingcan, LIANG Hong, et al. Spectroscopic study on the interaction between Bovine hemoglobin and nano-realgar[J]. Spectroscopy and Spectral Analysis, 2008, 28(4):852-855.
[15] 刘淑芳, 尹俊发, 宋茂勇, 等. 血液运输蛋白与C60富勒烯的相互作用[C]// 中国化学会第26届学术年会环境化学分会场论文集.天津:南开大学, 2008.
[16] 陈代武, 谢青季, 苏育华, 等. 荧光光谱法研究金纳米粒子和槲皮素及牛血红蛋白的相互作用[J]. 分析科学学报, 2008, 24(3):259-264.
[1] LIU Yu-mei, WANG Hai-rong, LIU Shu-fang. Fluorescence spectrometry study on the interaction between hydroxyl modified single-wall carbon nanotubes and bovine serum albumin/hemoglobin [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(3): 29-33.
[2] LI Chun-fang, LI Dong-xiang*, HOU Wan-guo*. Fluorescence enhancement effect of optical functionalized carbosilane dendrimer in the course of protonation [J]. J4, 2012, 47(1): 28-32.
[3] QI Zhong-bin,ZHANG He-ping . 1-resonance of a class of Fullerene graphs [J]. J4, 2008, 43(4): 67-72 .
[4] YU Jiang,LI Ning,WU Xia,GAO Xi-bao . Influence of an olfactory marker protein on the fluorescence enhancement of europium nanoparticles [J]. J4, 2008, 43(1): 20-23 .
[5] XU Fei,GUO Wei-hua,WANG Yu-fang,WANG Wei,DU Ning and WANG Ren-qing* . Photosynthetic fluorescence characteristics of six greening tree species on university campuses in the city of Jinan [J]. J4, 2007, 42(5): 86-94 .
[6] ZHANG Ke-wei,WANG Xian-li,LI Kun-peng and ZHANG Ju-ren . Effect of low-level phosphorus stress on photosynthetic characteristics of maize inbred line seedlings with low-level phosphorus tolerance [J]. J4, 2007, 42(3): 89-94 .
[7] ZHAO Xiao-jing,BAO Mi,JIN Li-ming,FAN Sheng-di . Study of UV-vis and fluorescence spectra properties of the porphyrin-liposome compound P-GlyL [J]. J4, 2007, 42(11): 6-10 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!