JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2015, Vol. 50 ›› Issue (02): 75-82.doi: 10.6040/j.issn.1671-9352.0.2014.342
Previous Articles Next Articles
KOU Hai-yan, WU Hong-bo
CLC Number:
[1] PAVELKA J. On fuzzy logic Ⅰ: Many-valued rules of inference, Ⅱ: Enriched residuated lattice and semantics of propositionalcalculi, III: Semantical completeness of some many-valued propositional calculi[J]. Zeitschrf Math Logik und Grundlagender Math, 1979, 25:45-52; 119-134; 447-464. [2] 徐扬. 格蕴涵代数[J]. 西南交通大学学报, 1993, 89(1):20-27. XU Yang. Lattice implication algebras[J]. Journal of Southwest Jiaotong University, 1993, 89(1):20-27. [3] XU Yang, RUAN Da, QIN Keyun, et al. Lattice-valued logic[M]. Berlin Heidelberg: Springer-Verlag, 2003. [4] HAJEK P. Metamathematics of fuzzy logic[M]. Dordrecht: Kluwer Academic Publishers, 1998. [5] 王国俊. 非经典数理逻辑与近似推理[M]. 2版.北京:科学出版社,2006. WANG Guojun. Non-classical mathematical logic and approximate reasoning[M]. 2nd.Beijing: Science Press, 2006. [6] 吴洪博. 基础R0代数与基础L*系统[J]. 数学进展, 2003, 32(5):565-576. WU Hongbo. Baisis R0-algebra and basis L* system[J]. Advances in Mathematics, 2003, 32(5):565-576. [7] ESTEVA F, GODO L. Monoidal t-norm based logic: towards a logic for left-continuous t-norms[J]. Fuzzy Sets and Systems, 2001, 124(3):271-288. [8] JUN Y B, XU, MA Y J. Fuzzy filters of MTL-algerbra[J]. Information Sciences, 2005, 175:120-138. [9] 裴道武. MTL-代数的特征定理[J]. 数学学报:中文版,2007,50(6):1201-1206. PEI Daowu. The characterizations of MTL-algebras[J]. Acta Mathematics Sinica: Chinese Series, 2007, 50(6):1201-1206. [10] 张小红,魏萍.DR0代数:由De Morgan 代数导出的正则剩余格[J].数学进展,2008,37(4):499-511. ZHANG Xiaohong, WEI Ping. DR0 algebras: a kind of regular residuated lattice via De Morgan algebras[J]. Advances in Mathematics, 2008, 37(4):499-511. [11] 张小红. 模糊逻辑及其代数分析[M]. 北京: 科学出版社,2008. ZHANG Xiaohong. Fuzzy logic and algebraic analysis[M]. Beijing: Science Press, 2008. [12] 刘敏,吴洪博.预线性剩余格与逻辑代数[J].工程数学学报,2008,25(2):199-203. LIU Min, WU Hongbo. Prelinearity residuated-lattice and logic algebras[J]. Chinese Journal of Engineering Mathematics, 2008, 25(2):199-203. [13] 王娜, 吴洪博. MTL-代数的演绎系统和余零化子及其相互关系[J]. 模糊系统与数学,2014, 28(1):9-14. WANG Na, WU Hongbo. The deductive system and co-annihilator of MTL-algebras and the relation between them[J]. Fuzzy Systems and Mathematics, 2014, 28(1):9-14. [14] Chang C C. Algebriac analysis of many-valued logics[J]. Trans Amer Math Soc, 1958, 88:467-490. [15] 王国俊.数理逻辑引论与归结原理[M].2版.北京:科学出版社,2006. WANG Guojun. An introduction to mathematical logic and resolution principle[M]. 2nd.Beijing: Science Press, 2006. [16] 吴望名. Fuzzy 蕴涵代数[J]. 模糊系统与数学, 1990,4(1):56-64. WU Wangming. Fuzzy implication algebras[J]. Fuzzy Systems and Mathematics, 1990, 4(1):56-64. [17] 刘练珍, 李开泰. FI代数同构于一族全序FI代数的直积的子代数的条件[J]. 纯粹数学与应用数学, 2004,20(1):63-67. LIU Lianzhen, LI Kaitai. The conditions of FI algebra to be a subalgebra of direct of a system of linearly ordered FI algebras[J]. Pure and Applied Mathematics, 2004, 20(1):63-67. [18] 刘春辉, 徐罗山. 格蕴涵代数的蕴涵表示定理[J]. 模糊系统与数学, 2010,24(4):26-32. LIU Chunhui, XU Luoshan. The representative theorems of lattice implication algebras by implication operator[J]. Fuzzy Systems and Mathematics, 2010, 24(4):26-32. [19] FONT J, RODRIGUEZ A J, TORRENS A. Wajsberg algebras[J]. Stochastica, 1984, 8:5-31. [20] 吴洪博,王昭海. BR0-代数的无序表示形式及WBR0-代数的性质[J].工程数学学报,2009, 26(3):456-460. WU Hongbo, WANG Zhaohai. The non-ordered Form of BR0-algeebras and properties of WBR0-algebras[J]. Chinese Journal of Engineering Mathematics, 2009, 26(3):456-460. [21] 高李红, 吴洪博. QBL-代数及其与BL-代数的等价性[J].吉林大学学报:理学版,2011,49(1):41-46. GAO Lihong, WU Hongbo. Quasi-BL-algebras and their equivalence with BL-algebras[J]. Journal of Jili University: Science Edition, 2011, 49(1):41-46. [22] 朱翔, 徐罗山. BL代数的等价刻画及更多性质[J]. 模糊系统与数学, 2011,25(1):13-18. ZHU Xiang, XU Luoshan. On characterizations and further properties of BL-algebras[J]. Fuzzy Systems and Mathematics, 2011, 25(1):13-18. |
[1] | . Representative forms of commutative BR0-algebras on a set by implication operator [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 86-94. |
[2] | LIU Li-jun. Characterizations of n-fold positive implicative filter in residuated lattice [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 48-52. |
[3] | LIANG Ying, CUI Yan-li, WU Hong-bo. Properties of residuated lattice of deduction systems set algebra in BL system [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 65-70. |
[4] | LIU Chun-hui. Lattice of(,∨(-overq))-fuzzy filters in a BL-algebra [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 104-110. |
[5] | QIAO Xi-min, WU Hong-bo. 〈,(-overQ)〉-fuzzy filter and its characterization of the non-commutative residual lattices on the interval sets [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 102-107. |
[6] | ZHOU Jian-ren, WU Hong-bo. A schematic extension of IMTL logic system [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 28-34. |
[7] | PENG Jia-yin. Soft filters of pseudo-BL algebras related to fuzzy set theory [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(08): 40-45. |
[8] | LIU Chun-hui. Fuzzy ultra ⊙-ideals in regular residuated lattices [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(12): 87-94. |
[9] | LUO Qing-jun1, 2, WANG Guo-jun1*. Topological properties of maximal filters in BL algebras [J]. J4, 2013, 48(12): 47-51. |
[10] |
LIU Chun-hui1,2.
Prime fuzzy ⊙ideals and its topological properties of regular residuated lattices [J]. J4, 2013, 48(12): 52-56. |
[11] | LIU Chun-hui1,2. Lattice of fuzzy filter in a Heyting algebra [J]. J4, 2013, 48(12): 57-60. |
[12] | LIU Chun-hui1,2. Theory of filters in Fuzzy implication algebras [J]. J4, 2013, 48(09): 73-77. |
[13] | ZHOU Jian-ren, WU Hong-bo*. The regularness of WBR0-algebras and relationship with other logic algebras [J]. J4, 2012, 47(2): 86-92. |
[14] | LI Ling-ling, WU Hong-bo*. BR0-distributivity and its generalization [J]. J4, 2012, 47(2): 93-97. |
[15] | LIU Yi1,2, XU Yang2, QIN Xiao-yan 2, QIN Ya3. TL-filters and TL-congruences of residuated lattices [J]. J4, 2012, 47(2): 98-103. |
|