JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2015, Vol. 50 ›› Issue (12): 1-4.doi: 10.6040/j.issn.1671-9352.0.2014.460

    Next Articles

A local characterization of centralizers on B(H)

YANG Yuan, ZHANG Jian-hua   

  1. School of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710062, Shaaxi, China
  • Received:2014-10-20 Revised:2015-01-26 Online:2015-12-20 Published:2015-12-23

Abstract: Let H be a Hilbert space over the real or complex field F. Suppose Ф:B(H)B(H) is a linear map such that 2Ф(P)=PФ(P)+Ф(P)P holds for all idempotent operators PB(H), then there exists a λ∈F such that Ф(A)=λA for all AB(H).

Key words: idempotent operator, centralizer, linear map

CLC Number: 

  • O177.1
[1] VUKMAN J. An identity related to centralizers in semiprime rings[J]. Comment Math Univ Carolin, 1999, 40(3):447-456.
[2] VUKMAN J, KOSI-ULBL I. On centralizers of semiprime rings[J]. Aequationes Math, 2003, 66(3):277-283.
[3] KOSI-ULBL I, VUKMAN J. On centralizers of standard operator algebras and semisimple H*-algebras[J]. Acta Math Hungar, 2006, 110(3):217-223.
[4] 齐霄霏, 杜拴平, 侯晋川. 中心化子的刻画[J]. 数学学报: 中文版, 2008, 51(3):509-516. QI Xiaofei, DU Shuanping, HOU Jinchuan. Characterization of centralizers[J]. Acta Math Sinica: Chinese Series, 2008, 51(3):509-516.
[5] BEIDAR K I, MARTINDAL III W S, MIKHALEV A V. Rings with generalized identities[M]. New York: Marcel Dekker Inc, 1995.
[6] BREŠAR M. Centralizing mappings and derivations in prime rings[J]. J Algebra, 1993, 156(2):385-394.
[7] MOLN?R L. On centralizers of an H*-algebra[J]. Publ Math Debrecen, 1995, 46(1-2):89-95.
[8] VUKMAN J, KOSI-ULBL I. Centralizers on rings and algebras[J]. Bull Austral Math Soc, 2005, 71(2):225-234.
[9] 杨翠, 张建华. 套代数上的广义Jordan中心化子[J]. 数学学报: 中文版, 2010, 53(5): 975-980. YANG Cui, ZHANG Jianhua. Generalized Jordan centralizers on nest algebras[J]. Acta Math Sinica: Chinese Series, 2010, 53(5):975-980.
[10] ZALAR B. On centralizers of semiprime rings[J]. Comment Math Univ Carolin, 1991, 32(4):609-614.
[11] PEARCY C, TOPPING D. Sum of small numbers of idempotent[J]. Michigan Math J, 1967, 14(4):453-465.
[1] FU Li-na, ZHANG Jian-hua. Characterization of Lie centralizers on B(X) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 10-14.
[2] ZHANG Fang-juan. Nonlinear Lie centralizers of generalized matrix algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 10-14.
[3] MA Fei, ZHANG Jian-hua, HE Wen. Generalized Jordan centralizers on CDC-algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(06): 83-88.
[4] XIE Tao, ZUO Ke-zheng. [J]. J4, 2013, 48(4): 95-103.
[5] CHEN Shi-zhao, CAO Xiao-hong*. Linear maps between operator algebras preserving the ascent and descent [J]. J4, 2013, 48(12): 86-89.
[6] MA Fei1,2, ZHANG Jian-hua1. Characterization of centralizers on standard operator algebras [J]. J4, 2013, 48(09): 64-67.
[7] XIAO Bing-feng, YAO Bing-xue. (λ,μ)-anti-fuzzy normal subgroup [J]. J4, 2011, 46(12): 120-123.
[8] FANG Li1, BAI Wei-zu2. Maps preserving the idempotency of products or triple Jordan products of idempotent operators [J]. J4, 2010, 45(12): 98-105.
[9] SHI Xue-ying, CHEN Xiao-ping. Linear maps preserving inverses of matrices on symmetric matrix  modules over principal ideal domains [J]. J4, 2010, 45(10): 4-8.
[10] ZHANG Li-jiang,WANG Wei,WEI Pu-wen . (1, t) encryption based on the Weil pairing [J]. J4, 2007, 42(10): 9-12 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!