JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2016, Vol. 51 ›› Issue (8): 10-14.doi: 10.6040/j.issn.1671-9352.0.2015.266

Previous Articles     Next Articles

Characterization of Lie centralizers on B(X)

FU Li-na, ZHANG Jian-hua*   

  1. College of Mathematics and Information Science, Shaanxi Normal University, Xian 710062, Shaanxi, China
  • Received:2015-06-01 Online:2016-08-20 Published:2016-08-08

Abstract: Let X be a Banach space over the real or complex number field F with dim X>1 and φ:B(X)→B(X) be an additive map. We prove that if there are positive integers m,n such that (m+n)φ([A,B])=m[φ(A),B]+n[A,φ(B)] holds for all A,B∈B(X), then there exist λ∈F and an additive map h:B(X)→F vanishing on commutators such that φ(A)=λA+h(A)I for all A∈B(X).

Key words: additive map, Lie centralizer, Banach space

CLC Number: 

  • O177.1
[1] VUKMAN J, KOSI-ULBL I. Centralizers on rings and algebras[J]. Bull Austral Math Soc, 2005, 71(2):225-234.
[2] 齐霄霏, 杜拴平, 侯晋川. 中心化子的刻画[J]. 数学学报: 中文版, 2008, 51(3): 509-516. QI Xiaofei, DU Shuanping, HOU Jinchuan. Characterization of centralizers[J]. Acta Math Sinica: Chinese Series, 2008, 51(3):509-516.
[3] WEI Qiong, LI Pengtong. Centralizers of J -subspace lattice algebras[J]. Linear Algebra Appl, 2007, 426(1):228-237.
[4] 李倩, 李鹏同. 完全分配CSL代数上的中心化子[J]. 数学年刊, 2011, 32A(3): 375-384. LI Qian, LI Pengtong. Centralizers of completely distributive CSL algebras[J]. Chinese Annals of Mathematics, 2011, 32A(3):375-384.
[5] VUKMAN J. Centralizers on semiprime rings[J]. Comment Math Univ Carolin, 2001, 42(2):237-245.
[6] GUO Jianbin, LI Jiankui. On centralizers of reflexive algebras[J]. Aequationes Math, 2012, 84(12):1-12.
[7] 杨翠, 张建华. 套代数上的广义Jordan中心化子[J]. 数学学报: 中文版, 2010, 53(5):975-980. YANG Cui, ZHANG Jianhua. Generalized Jordan centralizers on nest algebras[J]. Acta Math Sinica: Chinese Series, 2010, 53(5):975-980.
[8] KOSI-ULBL I, VUKMAN J. On centralizers of standard operator algebras and semisimple H*-algebras[J]. Acta Math Hungar, 2006, 110(3):217-223.
[9] VUKMAN J, KOSI-ULBL I. On centralizers of semiprime rings[J]. Aequationes Math, 2003, 66(3):277-283.
[10] VUKMAN J, KOSI-ULBL I. On centralizers of semisimple H*-algebras[J]. Taiwanese J Math, 2007, 11(4):1063-1074.
[11] HALMOS P. A Hilbert space problem book[M]. 2nd ed. New York: Springer-Verlag, 1982: 329.
[1] CHEN Yu-jia, YANG He. Existence of periodic solutions of a class of third order delay differential equations in Banach spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(8): 84-94.
[2] ZHANG Fang-juan. Nonlinear Lie centralizers of generalized matrix algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 10-14.
[3] MENG Jiao, JI Guo-xing. Additive maps on standard operator algebras preserving divisors [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(08): 20-23.
[4] MA Fei, ZHANG Jian-hua, HE Wen. Generalized Jordan centralizers on CDC-algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(06): 83-88.
[5] QI Wei-qing, JI Pei-sheng, LU Hai-ning. General solution and stability of bi-cubic functional equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(02): 60-66.
[6] LI Rong, JI Guo-xing*. Additive maps preserving operator range or kernel inclusion [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(2): 42-45.
[7] LIU Dan, ZHANG Jian-hua*. Characterizations of ξ-Lie derivations of B(X) [J]. J4, 2013, 48(8): 41-44.
[8] CHEN Cui. n-differentiation composition operators between weighted Banach  spaces of holomorphic functions [J]. J4, 2013, 48(4): 57-59.
[9] LI Zhi-gang, SONG Xiao-qiu*, YUE Tian. On nonuniform polynomial trichotomy of 
evolution operators in Banach space
[J]. J4, 2013, 48(12): 80-85.
[10] JI Pei-sheng, LIU Rong-rong. The Hyers-Ulam-Rassias stability of a mixed quintic functional equation of two variables [J]. J4, 2013, 48(10): 9-13.
[11] MA Fei1,2, ZHANG Jian-hua1. Characterization of centralizers on standard operator algebras [J]. J4, 2013, 48(09): 64-67.
[12] FAN Da-fu1,2, LI Chun-hong2. Some expressions of the generalized Drazin inverse of  the 2×2 block operators in Banach space [J]. J4, 2012, 47(12): 88-95.
[13] ZHAO Lv-hui-zi, SUN Jing-xian. Fixed point theorems of Rothe and Altman types convex-power 1-set-contraction operators in Banach spaces [J]. J4, 2011, 46(4): 49-52.
[14] CAI Jing-jing1, LIU Gui-long2. Positive solutions for singular third order two-point boundary value problem in abstract space [J]. J4, 2010, 45(8): 62-65.
[15] ZHANG Xiao-yan. Existence theorems of global solutions for nonlinear integral equations of Volterra type in Banach spaces [J]. J4, 2010, 45(8): 57-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!