JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2016, Vol. 51 ›› Issue (2): 6-11.doi: 10.6040/j.issn.1671-9352.0.2015.150

Previous Articles     Next Articles

Power series weak McCoy rings

LI Min1, WANG Yao1, REN Yan-li2*   

  1. 1. School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China;
    2. School of Mathematics and Information Technology, Nanjing Xiaozhuang University, Nanjing 211171, Jiangsu, China
  • Received:2015-04-07 Online:2016-02-16 Published:2016-03-11

Abstract: The concept of a power series weak McCoy ring is introduced. It is shown that(1)if every Ri(i∈I) is a power series weak McCoy ring, then ∏i∈IRi is a power series weak McCoy ring;(2)If R is a nil-semicommutative ring, then R[x] is a power series weak McCoy ring if and only if R is a power series weak McCoy ring;(3)If R is a α-compatible nil-semicommutative ring, then R[x;α] is a power series weak McCoy ring.

Key words: power series weak McCoy ring, power series weak Armendariz ring, McCoy ring, power series McCoy ring, power series

CLC Number: 

  • O153.3
[1] KIM N K, LEE K H, LEE Y. Power series rings satisfying a zero divisor property[J]. Comm Algebra, 2006, 34(6):2205-2218.
[2] HIZEM S. A note on nil power serieswise Armendariz rings[J]. Rend Circ Mat Palermo, 2010, 59(1):87-99.
[3] YANG Shizhou, SONG Xuemei, LIU Zhongkui. Power-serieswise McCoy rings[J]. Algebra Colloq, 2011, 18(2):301-310.
[4] HONG C Y, KIM N K, KWAK T K. Nilradicals of skew power series rings[J]. Bull Korean Math Soc, 2004, 41(3):507-519.
[5] HUH C, KIM C O, KIM E J, et al. Nilradicals of power series rings and nil power series rings[J]. J Korean Math Soc, 2005, 42(5):1003-1015.
[6] HUH C, KIM H K, LEE D S, et al. Prime radicals of formal power series rings[J]. Bull Korean Math Soc, 2001, 38(4):623-633.
[7] NASR-ISFAHANI A, MOUSSAVI A. On skew power serieswise Armendariz rings[J]. Comm Algebra, 2011, 39(9):3114-3132.
[8] YING Zhiling, CHEN Jianlong, LEI Zhen. Extensions of McCoy rings[J]. Northeast Math J, 2008, 24(1):85-94.
[9] MOHAMMADI R, MOUSSAVI A, ZAHIRI M. On nil-semicommutative rings[J]. Int Electron J Algebra, 2012, 11:20-37.
[10] ANNIN S. Associated primes over skew polynomial rings[J]. Comm Algebra, 2002, 30(5):2511-2528.
[11] OUYANG Lunqun, CHEN Huanyin. On weak symmetric rings[J]. Comm Algebra, 2010, 38(2):697-713.
[12] MOHAMMADI R, MOUSSAVI A, ZAHIRI M. Weak McCoy Ore extensions[J]. Intern Math Forum, 2011, 6(2):75-86.
[1] WANG Yao, ZHANG Jiu-lin, REN Yan-li. On Ore extensions of nilpotent p.p.-rings and nilpotent Baer rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(04): 76-81.
[2] FEI Pan-pan, WU Jun, ZHU Li-min. M-Weak quasi McCoy rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(10): 11-16.
[3] ZHANG Wan-ru. Skew nil McCoy rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 57-62.
[4] WANG Wen-kang. On central linear McCoy rings [J]. J4, 2013, 48(12): 6-13.
[5] GUO Li-qin, REN Sheng-zhang, HE Jian-wei, SHAO Hai-qin. One-sided exchange rings and their extensions [J]. J4, 2011, 46(4): 70-74.
[6] YANG Shi-zhou1, SONG Xue-mei2. Quasi-McCoy rings relative to a monoid [J]. J4, 2010, 45(8): 47-52.
[7] . Analytic solutions of a secondorder iterative functional differential equation [J]. J4, 2009, 44(12): 77-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!