JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2016, Vol. 51 ›› Issue (2): 12-15.doi: 10.6040/j.issn.1671-9352.0.2015.060
Previous Articles Next Articles
LIN Ping-feng
CLC Number:
[1] PLEMMONS R J, WEST M T. On the semigroup of binary relations[J]. Pacific J Math, 1970, 35:743-753. [2] PLEMMONS R J, SCHEIN B M. Groups of binary relations[J]. Semigroup Forum, 1970, 1(1):267-271. [3] SCHWARZ S. On idempotent binary relations on a finite set[J]. Czech J Math, 1970, 20:696-702. [4] KONIECZNY J. The semigroup generated by regular Boolean matrices[J]. South Asian Bull of Math, 2002, 25:627-641. [5] CHASE K. New semigroups of binary relations[J]. Semigroup Forum, 1979, 18(1):79-82. [6] CHASE K. Sandwish semigroups of binary relations[J]. Discrete Math, 1979, 28:231-236. [7] 林屏峰. 集合I到集合Λ上的二元关系半群Pθ(I×Λ)的生成集和Green-关系[J].西南民族大学学报(自然科学版), 2010,36(1):44-49. LIN Pingfeng. Generating sets and Greens relations for semigroup Pθ(I×Λ)of all binary relations form a set I to a set Λ[J]. Journal of Southwest University for Nationlities(Natural Science), 2010, 36(1):44-49. [8] 林屏峰. 集合Λ上的半格Γ确定的二元关系半群PΓ(Λ×Λ)的基本性质[J].西南民族大学学报(自然科学版), 2012,38(4):529-532. LIN Pingfeng. Some properties of semigroup PΓ(Λ×Λ) binary relations determined by the semilattice Γ on the set Λ[J]. Journal of Southwest University for Nationlities(Natural Science), 2012, 38(4):529-532. [9] 林屏峰,曾伟,曾纯一. 集合Λ上的半格Γ确定的二元关系半群PΓ(Λ×Λ)的幂等元[J].山东大学学报(理学版), 2013,48(8):36-40. LIN Pingfeng, ZENG Wei, ZENG Chunyi. Idempotents of semigroup PΓ(Λ×Λ)of binary relations determined by the semilattice Γ on the set Λ[J]. Journal of Shandong University(Natural Science), 2013, 48(8):36-40. [10] BIRKHOFF G. Lattice theory[M]. New York: American Mathematical Society, 1967. |
[1] | LIN Ping-feng, ZENG Wei, ZENG Chun-yi. Idempotents of semigroup PΓ(Λ×Λ) of binary relations determined by the semilattice Γ on the set Λ [J]. J4, 2013, 48(8): 36-40. |
|