JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2016, Vol. 51 ›› Issue (2): 16-20.doi: 10.6040/j.issn.1671-9352.0.2015.185
Previous Articles Next Articles
XIE Zong-zhen, ZHANG Xiao-jin*
CLC Number:
[1] AUSLANDER M, PLATZECK M I, REITEN I. Coxeter functions without diagrams[J]. Transactions of the American Mathematical Society, 1979, 250:1-11. [2] BRENNER S, BUTER M C R. Generalization of Bernstein-Gelfand-Ponomarev reflection functors[J]. Lecture Notes in Mathematics, 1980, 839:103-169. [3] HAPPEL D, RINGEL C M. Tilted algebras[J]. Transactions of the American Mathematical Society, 1982, 274:399-443. [4] ADACHI T, IYAMA O, REITEN I. τ-tilting theory[J]. Composito Mathematica, 2014, 150(3):415-452. [5] AIHARA T, IYAMA O. Silting mutation in triangulated categories[J]. Journal of the London Mathematical Society, 2012, 85(3):633-668. [6] IYAMA O, YOSHINO Y. Mutations in triangulated categories and rigid Cohen-Macaulay modules[J]. Inventiones Mathematicae, 2008, 172:117-168. [7] MIZUNO Y. Classifying τ-tilting modules over preprojective algebras of Dynkin type[J]. Mathematische Zeitschrift, 2014, 277(3):665-690. [8] WEI Jiaqun. τ-tilting theory and *-modules[J]. J Algebra, 2014, 414:1-5. [9] 张孝金, 张太忠. 根平方为零的Nakayama代数上的τ-倾斜模[J]. 南京大学学报(数学半年刊),2013, 30(2):247-251. ZHANG Xiaojin, ZHANG Taizhong. τ-tilting modules for Nakayama algebras with radical square zero[J]. Journal of Nanjing University Mathematical Biquarterly, 2013, 30(2):247-251. [10] AUSLANDER M, REITEN I, SMOLΦ S O. Representation theory of artin algebras[M]. Cambridge: Cambridge University Press, 1997. [11] CHEN Xiaowu. Algebras with radical square zero are either self-injective or CM-free[J]. Proceedings of the American Mathematical Society, 2012, 140:93-98. |
[1] | CHEN Wen-qian, ZHANG Xiao-jin, ZAN Li-bo. The number of tilting modules over Gorenstein algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 14-16. |
[2] | GUO Shou-tao, WANG Zhan-ping. Gorenstein homological dimensions of modules under exact zero-divisors [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 17-21. |
[3] | . FR-injective and FR-flat dimensions of complexes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 1-6. |
[4] | YANG Chun-hua. A note on the Gc-injective dimension of a complex [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 82-86. |
[5] | LUO Xiao-qiang, XING Jian-min. Ding gr-injective and gr-flat modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 87-91. |
[6] | WANG Xiao-qing, LIANG Li. Strongly cotorsion modules under faithfully flat co-base change [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 92-94. |
[7] | XU Hui, ZHAO Zhi-bing. Relative torsionless modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 75-80. |
[8] | CHEN Xiu-li, CHEN Jian-long. Homological dimensions with respect to semidualizing modules and excellent extensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 85-89. |
[9] | SUN Wei-kun, LIN Han-xing. Representation dimension of one-point extension algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 85-91. |
[10] | CHENG Hai-xia, YIN Xiao-bin. Gorenstein injective objects in Abelian categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 79-84. |
[11] | CHEN Xiu-li, CHEN Jian-long. Copure projective dimensions under Hopf extensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(10): 7-10. |
|