### On algebras with all τ-rigid modules projective

XIE Zong-zhen, ZHANG Xiao-jin*

1. Nanjing University of Information Science and Technology School of Mathematics and Statistics, Nanjing 210044, Jiangsu, China
• Received:2015-04-23 Online:2016-02-16 Published:2016-03-11

Abstract: For a special class of algebras, a method on constructing indecomposable τ-rigid modules from simple modules is given. As a result, it is proved that a basic and connected algebra A with radical square zero is local if all τ-rigid A-modules are projective.

CLC Number:

• O154.2
 [1] AUSLANDER M, PLATZECK M I, REITEN I. Coxeter functions without diagrams[J]. Transactions of the American Mathematical Society, 1979, 250:1-11.[2] BRENNER S, BUTER M C R. Generalization of Bernstein-Gelfand-Ponomarev reflection functors[J]. Lecture Notes in Mathematics, 1980, 839:103-169.[3] HAPPEL D, RINGEL C M. Tilted algebras[J]. Transactions of the American Mathematical Society, 1982, 274:399-443.[4] ADACHI T, IYAMA O, REITEN I. τ-tilting theory[J]. Composito Mathematica, 2014, 150(3):415-452.[5] AIHARA T, IYAMA O. Silting mutation in triangulated categories[J]. Journal of the London Mathematical Society, 2012, 85(3):633-668.[6] IYAMA O, YOSHINO Y. Mutations in triangulated categories and rigid Cohen-Macaulay modules[J]. Inventiones Mathematicae, 2008, 172:117-168.[7] MIZUNO Y. Classifying τ-tilting modules over preprojective algebras of Dynkin type[J]. Mathematische Zeitschrift, 2014, 277(3):665-690.[8] WEI Jiaqun. τ-tilting theory and *-modules[J]. J Algebra, 2014, 414:1-5.[9] 张孝金, 张太忠. 根平方为零的Nakayama代数上的τ-倾斜模[J]. 南京大学学报(数学半年刊),2013, 30(2):247-251. ZHANG Xiaojin, ZHANG Taizhong. τ-tilting modules for Nakayama algebras with radical square zero[J]. Journal of Nanjing University Mathematical Biquarterly, 2013, 30(2):247-251.[10] AUSLANDER M, REITEN I, SMOLΦ S O. Representation theory of artin algebras[M]. Cambridge: Cambridge University Press, 1997.[11] CHEN Xiaowu. Algebras with radical square zero are either self-injective or CM-free[J]. Proceedings of the American Mathematical Society, 2012, 140:93-98.
 [1] CHEN Wen-qian, ZHANG Xiao-jin, ZAN Li-bo. The number of tilting modules over Gorenstein algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 14-16. [2] GUO Shou-tao, WANG Zhan-ping. Gorenstein homological dimensions of modules under exact zero-divisors [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 17-21. [3] . FR-injective and FR-flat dimensions of complexes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 1-6. [4] YANG Chun-hua. A note on the Gc-injective dimension of a complex [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 82-86. [5] LUO Xiao-qiang, XING Jian-min. Ding gr-injective and gr-flat modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 87-91. [6] WANG Xiao-qing, LIANG Li. Strongly cotorsion modules under faithfully flat co-base change [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 92-94. [7] XU Hui, ZHAO Zhi-bing. Relative torsionless modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 75-80. [8] CHEN Xiu-li, CHEN Jian-long. Homological dimensions with respect to semidualizing modules and excellent extensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 85-89. [9] SUN Wei-kun, LIN Han-xing. Representation dimension of one-point extension algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 85-91. [10] CHENG Hai-xia, YIN Xiao-bin. Gorenstein injective objects in Abelian categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 79-84. [11] CHEN Xiu-li, CHEN Jian-long. Copure projective dimensions under Hopf extensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(10): 7-10.
Viewed
Full text

Abstract

Cited

Shared
Discussed