JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2014, Vol. 49 ›› Issue (10): 7-10.doi: 10.6040/j.issn.1671-9352.0.2014.332

Previous Articles     Next Articles

Copure projective dimensions under Hopf extensions

CHEN Xiu-li, CHEN Jian-long   

  1. Department of Mathematics, Southeast University, Nanjing 210096, Jiangsu, China
  • Received:2014-07-15 Online:2014-10-20 Published:2014-11-10

Abstract: Let H be a finite dimensional Hopf algebra and A be an algebra over a fixed field k. It is proved that the left copure projective dimension of A#H and that of A is the same when H is semisimple and the extension A/AH is H*-Galois. Moreover, it is shown that A#H is QF if and only if A is QF. Using (co)induction functors, we study the relations between copure projective dimensions in A#H-Mod and the counterparts in AH-Mod.

Key words: Hopf extension, copure projective dimension, QF ring

CLC Number: 

  • O153.3
[1] LI Fang, ZHANG Mianmian. Invariant properties of representations under cleft extensions[J]. Sci China: Ser A, 2007, 50(1):121-131.
[2] OYSTAEYEN F VAN, XU Yonghua, ZHANG Yinhuo. Inductions and coinduction for Hopf extensions[J]. Sci China: Ser A, 1996, 39(3):246-263.
[3] FU Xianhui, ZHU Haiyan, DING Nanqing. On copure projective modules and copure projective dimensions[J]. Comm Algebra, 2012, 40(1):343-359.
[4] MONTGOMERY S. Hopf Algebras and their actions on rings[M]// CBMS Regional Conference Series in Mathematics 82. Providence, RI: Amer Math Soc, 1993.
[5] RADFORD D E. The order of the antipode of a finite dimensional Hopf algebra is finite[J]. Amer J Math, 1976, 98(2):333-355.
[6] COHEN M, FISHMANN D, MONTGOMERY S. Hopf Galois extensions, smash products and Morita equivalences[J]. J Algebra, 1990, 133(2):351-372.
[7] GARCIA ROZAS J R, TORRECILLAS B. Preserving of covers by Hopf invariants[J]. Comm Algebra, 1999, 27(4):1737-1750.
[8] NASTASESCU C, VAN DEN BERGH M, OYSTAEYEN F VAN. Separable functors applied to graded rings[J]. J Algebra, 1989, 123(2):397-413.
[9] GARCIA ROZAS J R, TORRECILLAS B. Preserving and reflacting covers by functors. Applications to graded modules[J]. J Pure Appl Algebra, 1996, 112:91-107.
[10] ROTMAN J J. An introduction to homological algebra[M]. New York: Academic Press, 1979.
[11] CHEN Xiuli, ZHU Haiyan, LI Fang. Invariants of FP-projective dimensions under cleft extensions[J]. Algebra Colloq, 2013, 20(4):689-700.
[1] WU Xiao-ying, WANG Fang-gui. Graded version of Enochs theorem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 22-26.
[2] CHENG Cheng, ZOU Shi-jia. Irreducible splitting trace module of a class of Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 11-15.
[3] ZHU Lin. Separated monic representations of quivers of type A4and RSS equivalences [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 1-8.
[4] GUO Shuang-jian, LI Yi-zheng. When is BHQ a pre-braided category over quasi-Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 10-15.
[5] LU Dao-wei, WANG Zhen. L-R smash product for bialgebroids [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 32-35.
[6] LI Jin-lan, LIANG Chun-li. Strongly Gorenstein C-flat modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 25-31.
[7] WANG Hui-xing, CUI Jian, CHEN Yi-ning. Nil *-clean rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 16-24.
[8] SUN Yan-zhong, YANG Xiao-yan. Gorenstein AC-projective modules with respect to a semidualizing module [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 31-35.
[9] MA Xin, ZHAO You-yi, NIU Xue-na. Homology resolutions and homological dimensions of complexes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 18-23.
[10] . Gelfand-Krillov dimension of quantized enveloping algebra Uq(An) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 12-17.
[11] CHEN Xiu-li, CHEN Jian-long. Homological dimensions with respect to semidualizing modules and excellent extensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 85-89.
[12] CHEN Hua-xi, XU Qing-bing. The fundamental theorem forAMHH in Yetter-Drinfeld module categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 107-110.
[13] LU Qi, BAO Hong-wei. ZWGP-injectivity and nonsingularity of rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 19-23.
[14] GAO Han-peng, YIN Xiao-bin. On strongly g(x)-J-clean rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 24-29.
[15] WANG Yao, ZHOU Yun, REN Yan-li. Strongly 2-good Rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 14-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!