### Separated monic representations of quivers of type A4and RSS equivalences

ZHU Lin

1. School of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China
• Received:2017-11-08 Online:2018-02-20 Published:2018-01-31

Abstract: Ringel-Schmidmeier-Simson equivalences between separated monomorphism categories and separated epimorphism categories when the quiver is the of type of A4 with nonlinear order is studied. Using combinatorial methods and representation tools, the equivalence and its quasi inverse are given explicitly, and also the Auslander-Reiten quiver when A is the path algebra of A2 is given.

CLC Number:

• O153.3
 [1] LUO Xiuhua, ZHANG Pu. Separated monic representation I: Gorenstein-projective modules[J]. J Algebra, 2017, 479:1-34.[2] ASSEM I, SIMSON D, SKOWRONSKI A. Elements of the representation theory of associative algebras[M] // Techniques of representation theory, Lond Math Soc Students Texts 65. Cambridge: Cambridge University Press, 2006.[3] AUSLANDER M, REITEN I, SMALØ S O. Representation theory of Artin algebras[M] // Cambridge Studies in Adv Math 36. Cambridge: Cambridge University Press, 1995.[4] RINGEL C M. Tame algebras and integral quadratic forms[M] // Lecture Notes in Math:1099. New York: Springer-Verlag, 1984.[5] KUSSIN D, LENZING H, MELTZER H. Nilpotent operators and weighted projective lines[J]. J Reine Angew Math, 2010, 685(6):33-71.[6] KUSSIN D, LENZING H, MELTZER H, Triangle singularities, ADEchains, and weighted projective lines[J]. Adv Math, 2013, 237:194-251.[7] RINGEL C M, SCHMIDMEIER M. Submodules categories of wild representation type[J]. J Pure Appl Algebra, 2006, 205(2):412-422.[8] RINGEL C M, SCHMIDMEIER M. The Auslander-Reiten translation in submodule categories[J]. Trans Amer Math Soc, 2008, 360(2):691-716.[9] RINGEL C M, SCHMIDMEIER M. Invariant subspaces of nilpotent operators I[J]. J Rein Angew Math, 2008, 614:1-52.[10] SIMSON D. Linear representations of partially ordered sets and vector space categories[M]. [S.l] : Gordon and Breach Science Publishers, 1992.[11] SIMSON D. Representation types of the category of subprojective representations of a finite poset over K[t] /(tm) and a solution of a Birkhoff type problem[J]. J Algebra, 2007, 311:1-30.[12] SIMSON D. Tame-wild dichotomy of Birkhoff type problems for nilpotent linear operators[J]. J Algebra, 2015, 424:254-293.[13] XIONG Baolin, ZHANG Pu, ZHANG Yuehui. Auslander-Reiten translations in monomorphism categories[J]. Forum Math, 2014, 26(3):863-912.[14] XIONG Baolin, ZHANG Pu, ZHANG Yuehui. Bimodule monomorphism categories and RSS equivalences via cotilting modules[J]. arXiv: 1710.00314v1 [math.RT].[15] BIRKHOFF G. Subgroups of abelian groups[J]. Proc Lond Math Soc II, 1934, 38:385-401.[16] EIRIKSSON Ö. From submodule categories to the stable Auslander algebra[J]. J Algebra, 2017, 486:98-118.[17] ZHANG Pu, XIONG Baolin. Separated monic representation II: frobenius subcategories and RSS equivalences[J]. arXiv:1707.04866v1 [math.RT].[18] LESZCZYNSKI Z. On the representation type of tensor product algebras[J]. Fundamenta Math, 1994, 144:143-161.
 [1] WU Xiao-ying, WANG Fang-gui. Graded version of Enochs theorem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 22-26. [2] CHENG Cheng, ZOU Shi-jia. Irreducible splitting trace module of a class of Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 11-15. [3] GUO Shuang-jian, LI Yi-zheng. When is BHQ a pre-braided category over quasi-Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 10-15. [4] LU Dao-wei, WANG Zhen. L-R smash product for bialgebroids [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 32-35. [5] LI Jin-lan, LIANG Chun-li. Strongly Gorenstein C-flat modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 25-31. [6] WANG Hui-xing, CUI Jian, CHEN Yi-ning. Nil *-clean rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 16-24. [7] SUN Yan-zhong, YANG Xiao-yan. Gorenstein AC-projective modules with respect to a semidualizing module [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 31-35. [8] MA Xin, ZHAO You-yi, NIU Xue-na. Homology resolutions and homological dimensions of complexes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 18-23. [9] . Gelfand-Krillov dimension of quantized enveloping algebra Uq(An) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 12-17. [10] CHEN Xiu-li, CHEN Jian-long. Homological dimensions with respect to semidualizing modules and excellent extensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 85-89. [11] CHEN Hua-xi, XU Qing-bing. The fundamental theorem forAMHH in Yetter-Drinfeld module categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 107-110. [12] LU Qi, BAO Hong-wei. ZWGP-injectivity and nonsingularity of rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 19-23. [13] GAO Han-peng, YIN Xiao-bin. On strongly g(x)-J-clean rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 24-29. [14] WANG Yao, ZHOU Yun, REN Yan-li. Strongly 2-good Rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 14-18. [15] ZHANG Zi-heng, CHU Mao-quan, YIN Xiao-bin. Some properties of GWCN rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(12): 10-16.
Viewed
Full text

Abstract

Cited

Shared
Discussed
 No Suggested Reading articles found!