JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (12): 10-15.doi: 10.6040/j.issn.1671-9352.0.2017.177
Previous Articles Next Articles
GUO Shuang-jian, LI Yi-zheng
CLC Number:
[1] DRINFELD V G. Quasi-Hopf algebras[J]. Leningrad Math J, 1990, 1:1419-1457. [2] DRINFELD V G. Quasi-Hopf algebras and Knizhnik-Zamolodchikov equations[M] // Problems of Modern Quantum Field Theory. Berlin: Springer,1989: 1-13 [3] BULACU D, PANAITE F, VAN OYSTAEYEN F. Quasi-Hopf algebra actions and smash product[J]. Comm Algebra, 2000, 28:631-651. [4] WANG Shuanhong. Braided monoidal categories associated Yetter-Drinfeld categories[J]. Comm Algebra, 2002, 30:5111-5124. [5] BULACU D, NAUWELAERTS E. Radfords biproduct for quasi-Hopf algebras and bosonization[J]. J Pure Appl Algebra, 2002, 174:1-42. [6] BULACU D, PANAITE F, CAENEPEEL S. Yetter-Drinfeld categories for quasi-Hopf algebra[J]. Comm Algebra, 2006, 34:1-35. [7] PAREIGIS B. On braiding and dyslexia[J]. J Algebra, 1995, 171(2):413-425. [8] CAENEPEEL S, VAN OYSTAEYEN F, ZHANG Yinhuo. Quantum Yang-Baxter module algebras[J]. K-theory, 1994, 8(3):231-255. |
[1] | ZHOU Nan, ZHANG Tao, LU Dao-wei. L-R-smash products over monoidal Hom-bialgebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 5-8. |
[2] | LU Dao-wei, WANG Zhen. L-R smash product for bialgebroids [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 32-35. |
[3] | ZHAO Xiao-fan, ZHANG Xiao-hui. Generalized Hom-Smash products over monoidal Hom-bialgebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(10): 59-63. |
|