JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2016, Vol. 51 ›› Issue (2): 12-15.doi: 10.6040/j.issn.1671-9352.0.2015.060

Previous Articles     Next Articles

Non-solvabla elements of semigroup PΓ(Λ×Λ)of binary relations determined by the semilattice Γ on the set Λ

LIN Ping-feng   

  1. School of Preparatory Courses, Southwest University for Nationalities, Chengdu 610041, Sichuan, China
  • Received:2015-02-02 Online:2016-02-16 Published:2016-03-11

Abstract: Let Λ be an arbitrary nonempty set, and Γ be a semilattice on the set Λ. Let PΓ(Λ×Λ)is a semigroup of binary relations determined by the semilattice Γ on the set Λ. In the semigroup PΓ(Λ×Λ), a necessary and sufficient condition of non-solvable elements is obtained,and a class of non-solvable elements is found under certain conditions.

Key words: semigroup of binary relations, non-solvable elements, semilattices

CLC Number: 

  • O152.7
[1] PLEMMONS R J, WEST M T. On the semigroup of binary relations[J]. Pacific J Math, 1970, 35:743-753.
[2] PLEMMONS R J, SCHEIN B M. Groups of binary relations[J]. Semigroup Forum, 1970, 1(1):267-271.
[3] SCHWARZ S. On idempotent binary relations on a finite set[J]. Czech J Math, 1970, 20:696-702.
[4] KONIECZNY J. The semigroup generated by regular Boolean matrices[J]. South Asian Bull of Math, 2002, 25:627-641.
[5] CHASE K. New semigroups of binary relations[J]. Semigroup Forum, 1979, 18(1):79-82.
[6] CHASE K. Sandwish semigroups of binary relations[J]. Discrete Math, 1979, 28:231-236.
[7] 林屏峰. 集合I到集合Λ上的二元关系半群Pθ(I×Λ)的生成集和Green-关系[J].西南民族大学学报(自然科学版), 2010,36(1):44-49. LIN Pingfeng. Generating sets and Greens relations for semigroup Pθ(I×Λ)of all binary relations form a set I to a set Λ[J]. Journal of Southwest University for Nationlities(Natural Science), 2010, 36(1):44-49.
[8] 林屏峰. 集合Λ上的半格Γ确定的二元关系半群PΓ(Λ×Λ)的基本性质[J].西南民族大学学报(自然科学版), 2012,38(4):529-532. LIN Pingfeng. Some properties of semigroup PΓ(Λ×Λ) binary relations determined by the semilattice Γ on the set Λ[J]. Journal of Southwest University for Nationlities(Natural Science), 2012, 38(4):529-532.
[9] 林屏峰,曾伟,曾纯一. 集合Λ上的半格Γ确定的二元关系半群PΓ(Λ×Λ)的幂等元[J].山东大学学报(理学版), 2013,48(8):36-40. LIN Pingfeng, ZENG Wei, ZENG Chunyi. Idempotents of semigroup PΓ(Λ×Λ)of binary relations determined by the semilattice Γ on the set Λ[J]. Journal of Shandong University(Natural Science), 2013, 48(8):36-40.
[10] BIRKHOFF G. Lattice theory[M]. New York: American Mathematical Society, 1967.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!