JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2016, Vol. 51 ›› Issue (3): 60-69.doi: 10.6040/j.issn.1671-9352.0.2015.170
Previous Articles Next Articles
CHEN Sheng-qun1, 2, WANG Ying-ming1*, SHI Hai-liu1, 2
CLC Number:
[1] GALE D, SHAPLEY L. College admissions and the stability of marriage[J]. American Mathematical Monthly, 1962, 69(1):9-15. [2] LIN S Y, HORNG S J, KAO T W, et al. Solving the bi-objective personnel assignment problem using particle swarm optimization[J]. Applied Soft Computing, 2012, 12(9):2840-2845. [3] LIN H T. A job placement intervention using fuzzy approach for two-way choice[J]. Expert Systems with Applications, 2009, 36(2):2543-2553. [4] KLERKX L L. Matching Demand and Supply in the Agricultural Knowledge Infrastructure: Experiences with Innovation Intermediaries[J]. Food Policy, 2008, 33(3):260-276. [5] 蒋忠中,樊治平,汪定伟.电子中介中具有模糊信息且需求不可分的多属性商品交易匹配问题[J].系统工程理论与实践, 2011,31(12):2355-2366. JIANG Zhongzhong, FAN Zhiping, WANG Dingwei. Trade matching for multi-attribute exchanges with fuzzy information and indivisible demand in E-brokerage[J]. Systems Engineering-Theory & Practice, 2011, 31(12): 2355-2366. [6] NICOLAISEN J, PETROV V, TESFATSION L. Market power and efficiency in a computational electricity market with discriminatory double-auction pricing[J]. IEEE Transactions on Evolutionary Computation, 2001, 5(5):504-523. [7] IWAMA K, MIYAZAKI S, YAMAUCHI N. A approximation algorithm for the stable marriage problem[J]. Algorithmic, 2008, 51(3):342-356. [8] 乐琦.基于累积前景理论的具有不确定偏好序信息的双边匹配决策方法[J].系统科学与数学,2013,33(9):1061-1070. YUE Qi. Decision method for the two-sided matching with uncertain preference ordinal information based on cumulative prospect theory[J]. Journal of Systems Science and Mathematical Sciences, 2013, 33(9):1061-1070. [9] 梁海明,姜艳萍.一种基于弱偏好序信息的双边匹配决策方法[J].系统工程学报,2014,29(2):153-159. LIANG Haiming, JIANG Yanping. Method for two-sided matching decision-making based on the weak preference ordering information[J]. Journal of Systems Engineering, 2014, 29(2):153-159. [10] 张莉莉,胡祥培. 基于人力资本竞优结构的“团队-作业对象”匹配决策模型[J].管理工程学报,2015,29(1):1-7. ZHANG Lili, HU Xiangpei. “Team-working object” matching model based on human capital competition for optimal first structure[J]. Journal of Industrial Engineering and Engineering Management, 2015, 29(1):1-7. [11] 乐琦.无差异区间型多指标匹配决策方法[J].系统工程学报,2014,29(1):41-47. YUE Qi. Indifference interval multiple criteria matching decision method[J]. Journal of Systems Engineering, 29(1):41-47. [12] 陈希,樊治平,李玉花.IT服务供需双边匹配的模糊多目标决策方法[J].管理学报,2011,32(2):297-302. CHEN Xi, FAN Zhipin, LI Yuhua. A Fuzzy multi-objective decision making method for two-sided matching of supply and demand in IT service[J]. Chinese Journal of Management, 2011, 32(2):297-302. [13] HUANG D K, CHIU H N, YEH R H, et al. A fuzzy multi-criteria decision making approach for solving a bi-objective personnel assignment problem[J]. Computers & Industrial Engineering, 2009, 56(1):1-10. [14] 梁海明, 姜艳萍. 二手房组合交易匹配决策方法[J]. 系统工程理论实践, 2015, 35(2):358-367. LIANG Haiming, JIANG Yanping. Decision-making method on second-hand house combination matching[J]. Systems Engineering-Theory & Practice, 2015, 35(2):358-367. [15] 乐琦.基于不完全序关系信息的双边匹配决策方法[J]. 浙江大学学报(理学版), 2014, 41(5):523-527. YUE Qi. Decision method for two-sided matching based on incomplete order relation information[J]. Journal of Zhejiang University(Science Edition), 2014, 41(5):523-527. [16] DEMPSTER A P. Upper and lower probabilities induced by a multivalued mapping[J]. Annals of Mathematical Statistics, 1967, 38(2):325-339. [17] SHAFER G. A mathematical theory of evidence[M]. Princeton: Princeton University Press, 1976. [18] XIAO Z, YANG X, PANG Y, et al. The prediction for listed companies’ financial distress by using multiple prediction methods with rough set and dempster-shafer evidence theory[J]. Knowledge-Based Systems, 2012, 26:196-206. [19] ADAIR D, JAEGER M. Application of evidence theory to construction projects[J]. The International Journal of the Constructed Environment, 2014, 4(4):25-34. [20] ZHANG Z, LIU T, ZHANG W. Novel Paradigm for constructing masses in dempster-shafer evidence theory for wireless sensor networks multisource data fusion[J]. Sensors, 2014, 14(4):7049-7065. [21] YANG J B, XU D L. Evidential reasoning rule for evidence combination[J]. Artificial Intelligence, 2013, 205:1-29. [22] 陈圣群,王应明,施海柳.基于序数偏差融合度的动态匹配决策方法[J].运筹与管理, 2014,23(1):59-65. CHEN Shengqun, WANG Yingming, SHI Hailiu. A dynamic matching ecision-making method based on ordinal deviation fusion degrees[J]. Operations Research and Management Science, 2014, 23(1):59-65. [23] 陈圣群, 王应明,施海柳. 多属性匹配决策的等级置信度融合法[J]. 系统工程学报, 2015,30(1):25-33. CHEN Shengqun, WANG Yingming, SHI Hailiu. Data fusion method for multi-arrtibute matching decision-making with rank belief degrees[J]. Journal of Systems Engineering, 2015, 30(1):25-33. [24] WANG Y M, YANG J B, XU D L, et al. The evidential reasoning approach for multiple attribute decision making using interval belief degrees[J]. European Journal of Operational Research, 2006, 175(1):35-66. |
[1] | HUANG Shun-liang,HAO Xiu-mei,SHI Kai-quan, . One direction S-dual rough decision law and decision law mining [J]. J4, 2007, 42(10): 31-36 . |
[2] | ZHANG Fang-wei ,QU Shu-ying ,WANG Zhi-qiang ,YAO Bing-xue and ZENG Xian-yang . Application of the minimum deviation method for uncertain multi-attribute decision-making [J]. J4, 2007, 42(3): 32-35 . |
[3] | HU Gang,FENG Xiang-qian,WEI Cui-ping,LI Zong-zhi . Research on consistency and recursive priority of an interval number complementary judgment matrix [J]. J4, 2007, 42(11): 89-93 . |
|