JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2016, Vol. 51 ›› Issue (11): 127-134.doi: 10.6040/j.issn.1671-9352.0.2015.218

Previous Articles    

The influences of quantum channels on the generalized robustness of entanglement

WANG Xiao-xia, CAO Huai-xin*, ZHA Liao   

  1. School of Mathematics and Information Science, Shaanxi Normal University, Xian 710062, Shaanxi, China
  • Received:2015-05-12 Online:2016-11-20 Published:2016-11-22

Abstract: Based on the fact that the set of all separable states is a convex-closed set, it is proved that the infimum in the definition of the generalized robustness of entanglement(GRoE)can be attained; second, it is illustrated that a convex combination of two generalized optimal states of a state is still a generalized optimal state and the GRoE is a lower semi-continuous function on the set of all quantum states of a mult-partite system; lastly, necessary and sufficient conditions for a quantum channel to decrease(resp. increase, maintain)the GRoE of all quantum states were obtained. Final, as applications, some existing results were derived.

Key words: entanglement state, generalized robustness of entanglement, generalized relative robustness of entanglement, quantum channel, separable state

CLC Number: 

  • O177.1
[1] HORODECKI M, HORODECKI P, HORODECKI R. Separability of mixed states: necessary and sufficient conditions[J]. Physics Letters A, 1996, 223(1):1-8.
[2] WU S J, CHEN X M, ZHANG Y D. A necessary and sufficient criterion for multipartite separable states[J]. Physics Letters A, 2000, 275(4):244-249.
[3] PAN J W, SIMON C, BRUKNER C, et al. Entanglement purification for quantum communication[J]. Nature, 2001, 410:1067-1070.
[4] PAN J W, GASPARONI S, URSIN R, et al. Experimental entanglement purification of arbitrary unknown states[J]. Nature, 2003, 423(6938):417-422.
[5] FAN H. Remarks on entanglement assisted classical capacity[J]. Physics Letters A, 2003, 313:182-187.
[6] BENGTSSON I, ZYCZKOWSKI K. Geometry of quantum states: an introduction to quantum entanglement[M]. Cambridge University Press, 2006.
[7] HORODECKI R, HORODECKI P, HORODECKI M, et al. Quantum entanglement[J]. Reviews of Modern Physics, 2009, 81:865-942.
[8] LI M, FEI S M, LI-JOST X. Quantum entanglement: separability, measure, fidelity of teleportation, and distillation[J]. Advances in Mathematical Physics, 2010, 2010(1687-9120):745-750.
[9] HOU J, GUO Y. Constructing entanglement witnesses for states in infinite-dimensional bipartite quantum systems[J]. International Journal of Theoretical Physics, 2011, 50(4):1245-1254.
[10] HOU J. A characterization of positive linear maps and criteria of entanglement for quantum states[J]. Journal of Physics A: Mathematical and Theoretical, 2010, 43(38):2611-2619.
[11] 崔利凯. 开放量子系统中的纠缠动力学研究[D]. 曲阜师范大学硕士学位论文, 2012. CUI Kaili. Rearch on entanglement dynamics in open quantum system[D]. Qufu: Qufu Normal University, 2012.
[12] VIDAL G, TARRACH R. Robustness of entanglement[J]. Physical Review A, 1999, 59(1):141.
[13] DU J F, SHI M J, ZHOU X Y, et al. Geometrical interpretation for robustness of entanglement[J]. Physics Letters A, 2000, 267(4):244-250.
[14] SIMON C, KEMPE J. Robustness of multiparty entanglement[J]. Physical Review A, 2002, 65(5):052327.
[15] STEINER M. Generalized robustness of entanglement[J]. Physical Review A, 2003, 67(5):054305.
[16] MAN Z X, XIA Y J, AN N B. Robustness of multiqubit entanglement against local decoherence[J]. Physical Review A, 2008, 78(6):064301.
[1] WANG Li-li, CHEN Zheng-li. Some research about Wigner-Yanase-Dyson skew information [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 43-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!