JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (2): 30-36.doi: 10.6040/j.issn.1671-9352.0.2016.113
Previous Articles Next Articles
ZHU Xiao-ying1, PANG Shi-you2
CLC Number:
[1] ORE O. Theory of graphs[M]. Providence: American Mathematical Society, 1962. [2] GUPTA S, SINGH M, MADAN A K. Eccentric distance sum: a novel graph invariant for predicting biological and physical properties[J]. Journal of Mathematical Analysis and Applications, 2002, 275(47):386-401. [3] YU G H, FENG L H, ILIC A. On the eccentric distance sum of trees and unicyclic graphs[J]. Journal of Mathematical Analysis and Applications, 2011, 375(1):99-107. [4] LI S C, ZHANG M, YU G H, et al. On the extremal values of the eccentric distance sum of trees[J]. Journal of Mathematical Analysis and Applications, 2012, 390:99-112. [5] GENG X Y, LI S C, ZHANG M. Extremal values of the eccentric distance sum of trees[J]. Discrete Applied Mathematics, 2013, 161:2427-2439. [6] MIAO L Y, CAO Q Q, CUI N, et al. On the extremal values of the eccentric distance sum of trees[J]. Discrete Applied Mathematics, 2015, 186(29):199-206. [7] HUA H B, XU K X, SHU W N. A short and unified proof of Yu et als two results on the eccentric distance sum[J]. Journal of Mathematical Analysis and Applications, 2011, 382:364-366. [8] HUA H B, ZHANG S G, XU K X. Further results on the eccentric distance sum[J]. Discrete Applied Mathematics, 2012, 160:170-180. [9] ILIC A, YU G H, FENG L H. On the eccentric distance sum of graphs[J]. Journal of Mathematical Analysis and Applications, 2011, 381:590-600. [10] LI S C, WU Y Y, SUN L L. On the minimum eccentric distance sum of bipartite graphs with some given parameters[J]. Journal of Mathematical Analysis and Applications, 2015, 430:1149-1162. |
[1] | GAO Chao, HOU Xin-min*. Some remarks on maximum size of bipartite graphs with a given domination number [J]. J4, 2013, 48(8): 21-23. |
[2] | CHEN Hong-yu1,2, ZHANG Li3. Maximum number of edges in connected bipartite graphs with a given domination number [J]. J4, 2012, 47(8): 11-15. |
[3] | YUAN Xiu-hua. The total signed domination number of complete graph [J]. J4, 2010, 45(8): 43-46. |
[4] | XU Lan1,2, XU Ying 1, ZHANG Li 3. Independent domination bicritical graphs [J]. J4, 2010, 45(10): 40-44. |
[5] | WANG Bing . Properties of a quasi-claw-free graph [J]. J4, 2007, 42(10): 111-113 . |
|