JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (2): 49-54.doi: 10.6040/j.issn.1671-9352.0.2016.191

Previous Articles     Next Articles

Class of fuzzy bounded operators in Felbins type fuzzy normed linear spaces

CHANG Xiao-xuan, JI Pei-sheng*   

  1. School of Mathematics and Statistics, Qingdao University, Qingdao 266071, Shandong, China
  • Received:2016-04-28 Online:2017-02-20 Published:2017-01-18

Abstract: The definition of the fuzzy norm of a class of fuzzy bounded operators in Felbins type fuzzy normed spaces is introduced. Furthermore,it is showed that the class of fuzzy bounded operators endowed with this fuzzy norm is still a fuzzy normed space, and its topological structure as well as completeness is studied.

Key words: fuzzy functional analysis, fuzzy norm, completeness, fuzzy normed linear space

CLC Number: 

  • O177.99
[1] FELBIN C.Finite dimensional fuzzy normed linear space[J]. Fuzzy Sets and Systems, 1992, 48(2): 239-248.
[2] KALEVA O, SEIKKALA S. On fuzzy metric spaces[J]. Fuzzy Sets and Systems, 1984, 12(3):215-229.
[3] XIAO Jianzhong, ZHU Xinghua. Fuzzy normed space of operators and its completeness[J]. Fuzzy Sets and Systems, 2003, 133(3): 389-399.
[4] XIAOJianzhong, ZHUXinghua. On linearly topological structure and property offuzzy normed linear space[J]. Fuzzy Sets and Systems, 2002, 125(2): 153-161.
[5] 定光桂.泛函分析新讲[M].北京:科学出版社,2007. DING Guanggui. New functional analysis[M]. Beijing: Science Press, 2007.
[6] BAG T, SAMANTA S K. Fuzzy bounded linear operators in Felbins type fuzzy normed linear spaces[J]. Fuzzy Sets and Systems, 2008, 159(6): 685-707.
[7] ZADEN L A. Fuzzy sets[J]. Information and Control, 1965, 8(65): 338-353.
[8] BAG T, SAMANTA S K. Fuzzy bounded linear operators[J]. Fuzzy Sets and Systems, 2005, 151(3): 513-547.
[9] KATSARAS A K. Fuzzy topological vector spaces[J]. Fuzzy Sets and Systems, 1981, 6(1): 85-95.
[10] BAG T, SAMANTA S K. Finite dimensional fuzzy normed spaces[J]. Fuzzy Math, 2003, 11(3): 687-705.
[1] XUE Wen-ping, JI Pei-sheng. On the HUR stability of a mixed functional equation deriving from AQC mappings in FFNLS [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 1-8.
[2] HAO Cui-xia, YAO Bing-xue*. θ-fuzzy homomorphism of groups#br# [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 51-56.
[3] YANG Ping, CAO Huai-xin*, SI Hai-yan. Fuzzy closed and fuzzy open sets in a generalized fuzzy normed space [J]. J4, 2011, 46(4): 113-117.
[4] XIE Wei-qi1,2, LIU Dao-guang1, ZHANG Li2. The algebraic properties of internal P-sets [J]. J4, 2011, 46(3): 69-72.
[5] XIAO Bing-feng, YAO Bing-xue. (λ,μ)-anti-fuzzy normal subgroup [J]. J4, 2011, 46(12): 120-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!