JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (5): 49-57.doi: 10.6040/j.issn.1671-9352.0.2016.244
Previous Articles Next Articles
ZHANG Jie-song
CLC Number:
[1] GRANDEII J. Aspects of risk theory[M]. Berlin: Springer, 1991. [2] KASS R, GOOVAERTS M, DHAENE J, et al. Modern actuarial risk theory[M]. Dordrecht: Kluwer Academic Publishers, 2001. [3] 白建明, 尹晓玲. 小额索赔情形下现代风险模型的破产概率上界[J]. 系统工程学报, 2015, 30(001): 86-93. BAI Jianming, YIN Xiaoling. Upper bound of ruin probability for modern risk model with small claim condition[J]. Journal of Systems Engineering, 2015, 30(001): 86-93. [4] LI Z H, ZHU J X, CHEN F. Study of a risk model based on the entrance process[J]. Statistics & probability letters, 2005, 72(1): 1-10. [5] XIAO H M, LI Z H, LIU W W. The limit behavior of a risk model based on entrance processes[J]. Computers & Mathematics With Applications, 2008, 56(5): 1434-1440. [6] XIAO H M, LI Z H, LIU W W. The finite time ruin probability of a new risk model based on entrance process[J]. Communications in Statistics-Theory and Methods, 2013, 42(2): 336-345. [7] CHEN F, ZHU J X, LI Z H. Upper bounds for the ruin probabilities of the entrance-based risk model[J]. Communications in Statistics-Theory and Methods, 2008, 37(16): 2634-2652. [8] 肖鸿民, 白建明. 重尾索赔条件下基于进入过程的保险风险模型的破产概率[J]. 山东大学学报: 理学版, 2010, 45(10): 122-126. XIAO Hongmin, BAI Jianming. Properties of ruin probability for a risk model based on the policy entrance process under heavily-tailed claims[J]. Journal of Shandong University(Natural Science), 2010, 45(10): 122-126. [9] 唐风琴, 李泽慧, 陈进源. 一类基于进入过程的风险模型的精细大偏差[J]. 数学物理学报, 2011, 31(3): 737-751. TANG Fengqin, LI Zehui, CHEN Jinyuan. The precise large deviations for a risk model based on the policy entrance process[J]. Acta Mathematica Scientia, 2011, 31(3): 737-751. [10] LI Z H, KONG X B. A new risk model based on policy entrance process and its weak convergence properties [J]. Applied Stochastic Models in Business and Industry, 2007, 23(3): 235-246. [11] 王丽珍, 李静. 政策约束下基于风险调整报酬率的保险投资策略研究[J]. 中国管理科学, 2012, 20(1): 16-22. WANG Lizhen, LI Jing. Research on insurance portfolio selection under based on risk-adjusted return under the constraint of policy[J]. Chinese Journal of Management Science, 2012, 20(1): 16-22. [12] 周明, 陈建成, 董洪斌. 风险调整资本收益率下的最优再保险策略[J]. 系统工程理论与实践, 2010, 30(11): 1931-1937. ZHOU Ming, CHEN Jiancheng, DONG Hongbin. Optimal reinsurance strategies under return on risk-adjusted capital rate[J]. Systems Engineering—Theory & Practice, 2010, 30(11): 1931-1937. [13] 罗琰, 杨招军. 最小化破产概率的最优投资[J]. 管理科学学报, 2011, 14(5): 77-85. LUO Yan, YANG Zhaojun. Optimal investment for minimizing the probability of bankruptcy[J]. Journal of Management Science in China, 2011, 14(5): 77-85. [14] LIU C S, YANG H L. Optimal investment for an insurer to minimize its probability of ruin[J]. North American Actuarial Journal, 2004, 8(2): 11-31. [15] IGLEHART D L. Diffusion approximations in collective risk theory[J]. Journal of Applied Probability, 1969, 6(2): 285-292. [16] 陈树敏, 李仲飞. 保险公司实业项目投资策略研究[J]. 系统科学与数学, 2010, 30(10): 1293-1303. CHEN Shumin, LI Zhongfei. The optimal policy for insurance company with real investment[J]. Journal of Systems Science and Mathematical Sciences, 2010, 30(10): 1293-1303. [17] SCHMIDLI H. Optimal proportional reinsurance policies in a dynamic setting[J]. Scandinavian Actuarial Journal, 2001, 2001(1): 55-68. [18] PROMISLOW D, YOUNG V R. Minimizing the probability of ruin when claims follow Brownian motion with drift[J]. North American Actuarial Journal, 2005, 9(3): 110-128. [19] BI X C, ZHANG S G. Minimizing the risk of absolute ruin under a diffusion approximation model with reinsurance and investment[J]. Journal of Systems Science and Complexity, 2015, 28(1): 144-155. [20] BAI L H, CAI J, ZHOU M. Optimal reinsurance policies for an insurer with a bivariate reserve risk process in a dynamic setting[J]. Insurance: Mathematics and Economics, 2013, 53(3): 664-670. [21] ASMUSSEN S, ALBRECHER H. Ruin probabilities[M]. London: World Scientific, 2010. [22] PHILIP P. Stochastic integration and differential equations [M]. 2nd ed. Berlin: Springer-Verlag, 2005. [23] FLEMING W H, SONER H M. Controlled Markov processes and viscosity solutions[M]. Netherlands:Springer Science & Business Media, 2006. |
[1] | YU Jia-shang. On the fluid approximation for GI/G/1 queue with setup times [J]. J4, 2011, 46(1): 109-113. |
|