JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (9): 92-97.doi: 10.6040/j.issn.1671-9352.0.2017.023
Previous Articles Next Articles
ZHANG Shuang, YUE De-quan
CLC Number:
[1] CHEN F Y, KRASS D. Inventory models with minimal service level constraints[J]. European Journal of Operational Research, 2001, 134(1):120-140. [2] 唐应辉,唐小我. 排队论:基础与分析技术[M]. 北京:科学出版社,2006: 1-28. TANG Yinghui, TANG Xiaowo. Queuing theory: foundations and analytical techniques[M]. Beijing: Science Press, 2006: 1-28. [3] 田乃硕,岳德权. 拟生灭过程与矩阵几何解[M]. 北京:科学出版社,2002: 1-38. TIAN Naishuo, YUE Dequan. Quasi-birth-and-death process and matrix geometric solution[M]. Beijing: Science Press, 2002: 1-38. [4] 曾勇,董丽华,马建峰. 排队现象的建模、解析与模拟[M]. 西安:西安电子科技大学出版社,2011. ZENG Yong, DONG Lihua, MA Jianfeng. Modeling, analysis and simulation of queuing phenomenon[M]. Xian: Xidian University Press, 2011. [5] BERMAN O, KIM E. Stochastic models for inventory management at service facilities[J]. Stochastic Models, 1999, 15(4):695-718. [6] BERMAN O, SAPNA K P. Optimal control of service for facilities holding inventory[J]. Computers & Operations Research, 2001, 28(5):429-441. [7] SAPNA K P. An (s, Q) Markovian inventory system with lost sales and two demand classes[J]. Mathematical and Computer Modelling, 2006, 43(7/8):687-694. [8] BERMAN O, KIM E. Dynamic order replenishment policy in internet based supply chains[J]. Mathematical Methods of Operations Research, 2001, 53(3):371-390. [9] 许一敏,张毕西,吴菊华. 对系统提前期/等待时间敏感的批量排队优化模型[J]. 工业工程与管理,2011,16(3):27-30. XU Yimin, ZHANG Bixi, WU Juhua. Sensitive to system lead time/waiting time batch queuing optimization model[J]. Industrial Engineering and Management, 2011, 16(3):27-30. [10] 陈弘,刘名武,周宗放,等. 基于排队的库存服务系统最优控制策略[J]. 运筹与管理,2013,22(5):104-110. CHEN Hong, LIU Mingwu, ZHOU Zongfang, et al. Optimal control polices for an inventory service system based on the queueing theory[J]. Operations Research and Management Science, 2013, 22(5):104-110. |
[1] | CHEN Li, YANG Rui, MA Zhan-you. Performance analysis of Geom/G/1 queue with multiple vacations and set-up/close down period based on simulation experiment [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(08): 46-50. |
[2] | LIU Zai-ming, YU Sen-lin. A discrete time working vacations queuing system with different arrival rates and negative customers [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(06): 1-6. |
[3] | FAN Jian-Wu, DIAO Xiao-Hua, TIAN Ai-Shuo, YUAN Xiao-Jing. The M/M/1/N queuing system with negative customers and a single working vacation [J]. J4, 2009, 44(8): 68-73. |
[4] | YUE Dequan, MA Jinwang, MA Mingjian, YU Jun. [J]. J4, 2009, 44(3): 39-44 . |
[5] | FU Yonghong 1, YU Miaomiao 2*, TANG Yinghui 3, LI Cailiang 4. [J]. J4, 2009, 44(4): 72-78 . |
[6] |
ZHAO Xiao-hua,FAN Jian-wu,TIAN Nai-shuo,TIAN Rui-ling .
The M/M/1/N queuing system with balking, reneging and multiple working vacations [J]. J4, 2008, 43(10): 46-51 . |
|