JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2019, Vol. 54 ›› Issue (1): 116-126.doi: 10.6040/j.issn.1671-9352.0.2018.366
LI Le-le, JIA Jian-wen*
CLC Number:
[1] DAVID J D Earn, JONATHAN Dushoff, LEVIN S A. Ecology and evolution of the flu[J]. Trends in Ecology and Evolution, 2002, 17(7):334-340. [2] PALESE P, YOUNG J. Variation of influenza A, B, and C viruses[J]. Science, 1982, 215(4539):1468-1474. [3] Casagrandi Renato, Bolzoni Luca, LEVIN Simon A, et al. The SIRC model and influenza A[J]. Mathematical Biosciences, 2006, 200(2): 152-169. [4] ANDREASEN V, LIN J, LEVIN S A. The dynamics of cocirculating influenza strains conferring partial cross-immunity[J]. Journal of Mathematical Biology, 1997, 35(7):825-842. [5] CHUNG K W, LUI R. Dynamics of two-strain influenza model with cross-immunity and no quarantine class[J]. Journal of Mathematical Biology, 2016, 73(6/7):1-24. [6] LIN J, ANDREASEN V, LEVIN S A. Dynamics of influenza A drift: the linear three-strain model[J]. Mathematical Biosciences, 1999, 162(1/2):33-51. [7] NU(¨overN)O M, FENG Z, CASTILLO-CHAVEZ C. Dynamics of two-strain influenza with isolation and partial cross-immunity[J]. SIAM Journal on Applied Mathematics, 2006, 65(3):964-982. [8] LARSON H, TYRRELL D, BOWKER C, et al. Immunity to challenge in volunteers vaccinated with an inactivated current or earlier strain of influenza A(H3N2)[J]. J Hyg Cambridge, 1978, 80(2):243-248. [9] DAVIES J R, GRILLI E A, SMITH A J. Influenza A: infection and reinfection[J]. J Hyg Cambridg, 1984, 92(1):125-127. [10] LI Haijiao, GUO Shangjiang. Dynamic of a sirc epidemiological model[J]. Electronic Journal of Differential Equations, 2017, 2017(121):1-18. [11] JIANG Zhichao, MA Wanbiao, WEI Junjie. Global Hopf bifurcation and permanence of a delayed SEIRS epidemic model[J]. Mathematics and Computers in Simulation, 2016, 122(1):35-54. [12] MANNA K, CHAKRABARTY S P. Global stability of one and two discrete delay models for chronic hepatitis B infection with HBV DNA-containing capsids[J]. Computers Applapplied Mathematics, 2017, 36(1):1-12. [13] NEOFYTOU G, KYRYCHKO Y N, BLYUSS K B. Time-delayed model of RNA interference[J]. Ecological Complexity, 2017, 30(1):11-25. [14] WANG Xunyang, HATTAF Khalid, HUO Haifeng, et al. Stability analysic of a delayed social epidemics model with general contact rate and its optimal control[J]. Journal of Industrial and Management Optimization, 2017, 12(4):1267-1285. [15] ZHANG Yinying, JIA Jianwen. Hopf bifurcation of an epidemic model with a nonlinear birth in population and vertical transmission[J]. Applied Mathematics and Computation. 2014, 230(4):164-173. [16] SAMANTA G P. Global dynamics of a nonautonomous SIRC model for influenza A with distributed time delay[J]. Differential Equations and Dynamical Systems, 2010, 18(4):341-362. [17] DIEKMANN O, HEESTERBEEK J A P, METZ J A J. On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations[J]. Journal of Mathematical Biology, 1990, 28(4):365-382. [18] HASSARD B D, HASSARD D B, KAZARINOFF N D, et al. Theory and applications of Hopf bifurcation[M]. Cambridge: Cambridge University Press, 1981. [19] HU Guangping, LI Xiaoling. Stability and Hopf bifurcation for a delayed predator-prey model with disease in the prey[J]. Chaos, Solitons and Fractals, 2012, 45(3):229-237. |
[1] | CHEN Yu-jia, YANG He. Existence of periodic solutions of a class of third order delay differential equations in Banach spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(8): 84-94. |
[2] | CHEN Li, LIN Ling. Stock option pricing with time delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 36-41. |
[3] | ZHANG Dao-xiang, SUN Guang-xun, MA Yuan, CHEN Jin-qiong, ZHOU Wen. Hopf bifurcation and spatial patterns in a delayed diffusive predator-prey system with Holling-III functional response and linear harvesting effect [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 85-94. |
[4] | GAO Rong, ZHANG Huan-shui. Stabilization for discrete-time stochastic systems with multiple input delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 105-110. |
[5] | RAO Xu-li, HUANG Chuan, LIN Hui. Novel USRP-based fast channel handoff scheme in wireless LAN [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 49-53. |
[6] | JU Pei-jun, WANG Wei. Delay margin of linear multi-input multi-output system [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 60-64. |
[7] | . Periodic solutions for second order singular damped differential equations with a weak singularity [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 84-88. |
[8] | WANG Ya-jun, ZHANG Shen, HU Qing-song, LIU Feng, ZHANG Yu-ting. Consensus problem of time-delayed multi-agent system with measurement noise [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(1): 74-80. |
[9] | WANG Shuang-ming. Dynamical analysis of a class of periodic epidemic model with delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(1): 81-87. |
[10] | CHEN Bin. Third-order periodic boundary value problems with sign-changing Greens function [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 79-83. |
[11] | TAN Cheng, ZHANG Huan-shui. Lyapunov-type stabilizating conditions of discrete-time stochastic systems with input delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(5): 114-120. |
[12] | WANG Chang-hong, WANG Lin-shan. Mean square exponential stability of memristor-based stochastic neural networks with S-type distributed delays [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(5): 130-135. |
[13] | . Existence of periodic solutions for a class of Hamiltonian systems with p-Laplace [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(12): 42-46. |
[14] | LI Lin, ZHANG Huan-shui. Stabilization for discrete-time systems with multiple input delays [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(11): 91-97. |
[15] | WU Cheng-ming. Existence of positive periodic solutions for second order singular coupled systems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(10): 81-88. |
|