JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2019, Vol. 54 ›› Issue (6): 112-117.doi: 10.6040/j.issn.1671-9352.0.2018.584
LIU Ying, CAO Xiao-hong*
CLC Number:
[1] KATO T. Perturbation theory for linear operator[M]. New York: Springer-Verlag, 1966. [2] GOHBERG I, GOLDBERG S, KAASHORK M A. Unbounded linear operators[J]. American Mathematical Monthly, 1968, 75(7):288-322. [3] HARTE R. On Kato non-singularity[J]. Studia Mathematica,1996, 117(2):107-114. [4] GONG Weibang, HAN Deguang. Spectrum of the products of operators and compact perturbations[J]. Proceedings of The American Mathematical Society, 1994, 120(3):755-760. [5] DJORDJEVIC D S. Operators consistent in regularity[J]. Publicationes Mathematicae Debrecen, 2002, 60(1):1-15. [6] WEYL H V. Über beschränkte quadratische formen, deren differenz vollstetig ist[J]. Rendiconti Del Circolo Matematico Di Palermo, 1909, 27(1):373-392. [7] BERBERIAN S K. An extension of Weyls theorem to a class of not necessarily normal operators[J]. Michigan Mathematical Journal, 1969, 16(3):273-279. [8] LI Chunguang, ZHU Sen, FENG Youling. Weyls theorem for functions of operators and approximation[J]. Integral Equations and Operator Theory, 2010, 67(4):481-497. [9] CURTO R E, HAN Y M. Weyls theorem for algebraically paranormal operators[J]. Integral Equations and Operator Theory, 2003, 47(3):307-341. [10] AN I J, HAN Y M. Weyls theorem for algebraically quasi-class a operators[J]. Integral Equations and Operator Theory, 2008, 62(1):1-10. [11] SHI Weijuan, CAO Xiaohong. Weyls theorem for the square of operator and perturbations[J]. Communications in Contemporary Mathematics, 2015, 17(1):1-11. [12] COBURN L A. Weyls theorem for nonnormal operators[J]. Michigan Mathematical Journal, 1966, 13(3):285-288. [13] DUGGAL B P. The Weyl spectrum of p-hyponormal operators[J]. Integral Equations and Operator Theory, 1997, 29(2):197-201. [14] CAO Xiaohong. Analytically class operators and Weyls theorem[J]. Journal of Mathematical Analysis and Applications, 2006, 320(2):795-803. [15] TAYLOR A E. Theorems on ascent, descent, nullity and defect of linear operators[J]. Mathematische Annalen, 1996, 163(1):18-49. [16] HARTE R. Invertibility and singularity for bounded linear operators[M]. New York: Marcel Dekker, 1988. [17] HARTE R, LEE W Y. Another note on Weyls theorem[J]. Transactions of the American Mathematical Society, 1997, 349(5):2115-2124. |
[1] | ZHOU An-min, HU Lei, LIU Lu-ping, JIA Peng, LIU Liang. Malicious Office document detection technology based on entropy time series [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(5): 1-7. |
[2] | Zhao-xia WU,Jia-qi WANG. Wireless single spectrum secure auction algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(11): 51-55. |
[3] | ZHANG Ying, CAO Xiao-hong, DAI Lei. Judgement of Weyls theorem for bounded linear operators [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 82-87. |
[4] | SONG Jia-jia, CAO Xiao-hong, DAI Lei. The judgement for the small compact perturbation of SVEP for upper triangular operator matrices [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 61-67. |
[5] | DAI Lei, CAO Xiao-hong. Property(z)and Weyl type theorem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 60-65. |
[6] | KONG Ying-ying, CAO Xiao-hong, DAI Lei. Judgement of a-Weyls theorem and its perturbations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 77-83. |
[7] | WU Xue-li, CAO Xiao-hong, ZHANG Min. The perturbation of the single valued extension property for bounded linear operators [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 5-9. |
[8] | YANG Gong-lin, JI Pei-sheng. Some properties of primitive ideal submodules in Hilbert C*-modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(10): 50-55. |
[9] | CHEN Shi-zhao, CAO Xiao-hong*. Linear maps between operator algebras preserving the ascent and descent [J]. J4, 2013, 48(12): 86-89. |
[10] | LU Shi-fang1, WEI Liang2, ZHAO Hai-xing2. On signless Laplace integral graphs of complete tripartite graphs [J]. J4, 2012, 47(12): 41-46. |
[11] | GAO Jie. Structure of eigenvalues of multi-point boundary value problems [J]. J4, 2011, 46(8): 17-22. |
[12] | ZHANG He-jia, CAO Xiao-hong*. The equivalence of a-Browder theorem and property (ω1) for operational calculus of operators [J]. J4, 2011, 46(4): 108-112. |
[13] | WANG Ji-rong1, CAO Xiao-hong2, LIU Jun-ying2. Operators with consistency in Fredholm and Weyl′s theorem [J]. J4, 2011, 46(1): 87-91. |
[14] | WANG Ji-rong1, CAO Xiao-hong2. On the perturbation of the Kato essential spectra for upper triangular operator matrices [J]. J4, 2010, 45(3): 90-95. |
[15] | ZHAO Ling-ling, ZHANG He-jia, CAO Xiao-hong*. Essential spectrum of the products of operators [J]. J4, 2010, 45(10): 83-88. |
|