JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2014, Vol. 49 ›› Issue (10): 50-55.doi: 10.6040/j.issn.1671-9352.0.2014.158
Previous Articles Next Articles
YANG Gong-lin, JI Pei-sheng
CLC Number:
[1] KAPLANSKY I. Modules over operator algebras[J]. AmerJ Math, 1953, 75:839-853. [2] PASCHKE W L. Inner product modules over B*-algebras[J]. Trans Amer Math Soc, 1973, 182:443-468. [3] RIEFFEL M A. Induced representation on C*-algebras[J]. Adv in Math, 1974, 13:176-257. [4] JENSEN K K, THOMSEN K. Elements of KK-theory[M]. Boston: Birkhauser, 1991. [5] WORONOWICZ S L. Unbounded elements affiliated with C*-algebras and non-compact quantum groups[J].Commun Math Phys, 1991, 136:399-432. [6] MURPHY G J. Positive definite kernels and Hilbert C*-modules[J]. Pro Ed Math Soc, 1997, 40(2):367-374. [7] SKEIDE M. Generalised matrix C*-algebras and representations of Hilbert modules[J]. Math Pro R Ir Acad, 2000(100A):11-38. [8] ZETTL H. A characterization of ternary rings of operators[J]. Adv in Math,1983, 48(2):117-143. [9] ARAMBASIC L J. Irreducible representations of Hilbert C*-modules[J]. Math Pro R Ir Acad, 2005, 105(2):11-24. [10] BAKIC D, GULJS B. On a class of module maps of Hilbert C*-modules[J]. Math Commun, 2002, 7(2):177-192. [11] LANCE E C. Hilbert C*-modules[M]. London: Cambridge University Press, 1995. [12] MURPHY G J. C*-algebras and operator theory[M]. London: Academic Press, 1990. |
[1] | WU Li, ZHANG Jian-hua. Nonlinear Jordan derivable maps on triangular algebras by Lie product square zero elements [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 42-47. |
[2] | ZHANG Qiao-wei, GUO Zhi-hua, CAO Huai-xin. Topological effect algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 97-103. |
[3] | WANG Li-li, CHEN Zheng-li. Some research about Wigner-Yanase-Dyson skew information [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 43-47. |
[4] | WANG Xiao-xia, CAO Huai-xin, ZHA Liao. The influences of quantum channels on the generalized robustness of entanglement [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(11): 127-134. |
[5] | FU Li-na, ZHANG Jian-hua. Characterization of Lie centralizers on B(X) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 10-14. |
[6] | LIANG Wen-ting, CHEN Zheng-li. Strongly and weakly separable operators on tensor product spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 19-24. |
[7] | YANG Yuan, ZHANG Jian-hua. A local characterization of centralizers on B(H) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 1-4. |
[8] | ZHANG Fang-juan. Nonlinear Lie centralizers of generalized matrix algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 10-14. |
[9] | LI Jun, ZHANG Jian-hua, CHEN Lin. Dual module Jordan derivations and dual module generalized derivations of triangular Banach algebra [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(10): 76-80. |
[10] | MENG Jiao, JI Guo-xing. Additive maps on standard operator algebras preserving divisors [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(08): 20-23. |
[11] | KONG Liang, CAO Huai-xin. Characterization and perturbations of ε-approximate square isosceles-orthogonality preserving mappings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(06): 75-82. |
[12] | QI Wei-qing, JI Pei-sheng, LU Hai-ning. General solution and stability of bi-cubic functional equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(02): 60-66. |
[13] | LI Rong, JI Guo-xing*. Additive maps preserving operator range or kernel inclusion [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(2): 42-45. |
[14] | BU Mei-hua,JI Pei-sheng,QI Wei-qing . Lie ideas of the nest subalgebras in hyperfinite factors [J]. J4, 2007, 42(10): 69-75 . |
[15] | WANG Qiao,LIU Xiao-ji* . Characterization and perturbation of the generalized Drazin inverse for Banach space operators [J]. J4, 2008, 43(8): 42-45 . |
|