JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2014, Vol. 49 ›› Issue (10): 50-55.doi: 10.6040/j.issn.1671-9352.0.2014.158

Previous Articles     Next Articles

Some properties of primitive ideal submodules in Hilbert C*-modules

YANG Gong-lin, JI Pei-sheng   

  1. College of Mathematics, Qingdao University, Qingdao 266071, Shandong, China
  • Received:2014-04-14 Online:2014-10-20 Published:2014-11-10

Abstract: The definition of the primitive ideal submodules in Hilbert C*-modules is given. Some properties of primitive ideal submodule space and the spectrum space in Hilbert C*-modules are studied. It is shown that these results extend and improve the existing results.

Key words: spectrum space, primitive ideal submodule, Hilbert C*-modules

CLC Number: 

  • O177.1
[1] KAPLANSKY I. Modules over operator algebras[J]. AmerJ Math, 1953, 75:839-853.
[2] PASCHKE W L. Inner product modules over B*-algebras[J]. Trans Amer Math Soc, 1973, 182:443-468.
[3] RIEFFEL M A. Induced representation on C*-algebras[J]. Adv in Math, 1974, 13:176-257.
[4] JENSEN K K, THOMSEN K. Elements of KK-theory[M]. Boston: Birkhauser, 1991.
[5] WORONOWICZ S L. Unbounded elements affiliated with C*-algebras and non-compact quantum groups[J].Commun Math Phys, 1991, 136:399-432.
[6] MURPHY G J. Positive definite kernels and Hilbert C*-modules[J]. Pro Ed Math Soc, 1997, 40(2):367-374.
[7] SKEIDE M. Generalised matrix C*-algebras and representations of Hilbert modules[J]. Math Pro R Ir Acad, 2000(100A):11-38.
[8] ZETTL H. A characterization of ternary rings of operators[J]. Adv in Math,1983, 48(2):117-143.
[9] ARAMBASIC L J. Irreducible representations of Hilbert C*-modules[J]. Math Pro R Ir Acad, 2005, 105(2):11-24.
[10] BAKIC D, GULJS B. On a class of module maps of Hilbert C*-modules[J]. Math Commun, 2002, 7(2):177-192.
[11] LANCE E C. Hilbert C*-modules[M]. London: Cambridge University Press, 1995.
[12] MURPHY G J. C*-algebras and operator theory[M]. London: Academic Press, 1990.
[1] WU Li, ZHANG Jian-hua. Nonlinear Jordan derivable maps on triangular algebras by Lie product square zero elements [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 42-47.
[2] ZHANG Qiao-wei, GUO Zhi-hua, CAO Huai-xin. Topological effect algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 97-103.
[3] WANG Li-li, CHEN Zheng-li. Some research about Wigner-Yanase-Dyson skew information [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 43-47.
[4] WANG Xiao-xia, CAO Huai-xin, ZHA Liao. The influences of quantum channels on the generalized robustness of entanglement [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(11): 127-134.
[5] FU Li-na, ZHANG Jian-hua. Characterization of Lie centralizers on B(X) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 10-14.
[6] LIANG Wen-ting, CHEN Zheng-li. Strongly and weakly separable operators on tensor product spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 19-24.
[7] YANG Yuan, ZHANG Jian-hua. A local characterization of centralizers on B(H) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 1-4.
[8] ZHANG Fang-juan. Nonlinear Lie centralizers of generalized matrix algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 10-14.
[9] LI Jun, ZHANG Jian-hua, CHEN Lin. Dual module Jordan derivations and dual module generalized derivations of triangular Banach algebra [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(10): 76-80.
[10] MENG Jiao, JI Guo-xing. Additive maps on standard operator algebras preserving divisors [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(08): 20-23.
[11] KONG Liang, CAO Huai-xin. Characterization and perturbations of ε-approximate square isosceles-orthogonality preserving mappings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(06): 75-82.
[12] QI Wei-qing, JI Pei-sheng, LU Hai-ning. General solution and stability of bi-cubic functional equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(02): 60-66.
[13] LI Rong, JI Guo-xing*. Additive maps preserving operator range or kernel inclusion [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(2): 42-45.
[14] BU Mei-hua,JI Pei-sheng,QI Wei-qing . Lie ideas of the nest subalgebras in hyperfinite factors [J]. J4, 2007, 42(10): 69-75 .
[15] WANG Qiao,LIU Xiao-ji* . Characterization and perturbation of the generalized Drazin inverse for Banach space operators [J]. J4, 2008, 43(8): 42-45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!