### Global regularity for very weak solutions to non-homogeneous A-harmonic equation

XU Xiu-juan, YAN Shuo, ZHU Ye-qing

1. College of Science, North China University of Science and Technology, Tangshan 063210, Hebei, China
• Published:2020-02-14

Abstract: This paper deals with boundary value problem for non-homogeneous A-harmonic equation div(A(x,∇u))=f(x). A global regularity result is derived for very weak solutions under some controllable and coercivity conditions and some proper integrable assumptions on the nonlinear term, by using the Hodge decomposition theorem and the methods in Sobolev spaces. The results generalize the corresponding results in related literatures.

CLC Number:

• O175.25
 [1] 佟玉霞, 谷建涛, 徐秀娟. 一类非齐次A-调和方程很弱解的正则性[J]. 高校应用数学学报:A辑, 2009, 24(3):319-323. TONG Yuxia, GU Jiantao, XU Xiujuan. Regularity for very weak solutions to A-harmonic equation[J]. Applied Mathematics A Journal of Chinese Universities: Ser. A, 2009, 24(3):319-323. [2] IWANIEC T, SBORDONE C. Weak minima of variational integrals[J]. J Reine Angew Math, 1994, 454:143-162.[3] 高红亚. A-调和方程很弱解的正则性[J]. 数学学报, 2001, 44(4):605-610. GAO Hongya. Regularity for very weak solutions of A-harmonic equations[J]. Acta Mathematica Sinica, 2001, 44(4):605-610.[4] 朱坤杰, 陈淑红. 非齐次拟线性A-调和方程很弱解的局部正则性[J]. 厦门大学学报(自然科学版), 2018, 57(1):92-98. ZHU Kunjie, CHEN Shuhong. Regularity for very weak solutions to non-homogeneous quasi-linear A-harmonic equation[J]. Journal of Xiamen University(Natural Science), 2018, 57(1):92-98.[5] 高红亚, 贾苗苗. 障碍问题解的局部正则性和局部有界性[J]. 数学物理学报, 2017, 37(4):706-713. GAO Hongya, JIA Miaomiao. Local regularity and local boundedness for solutions to obstacle problems[J]. Acta Mathematica Scientia, 2017, 37(4):706-713.[6] 周树清, 胡振华, 彭冬云. 一类A-调和方程的障碍问题的很弱解的全局正则性[J]. 数学物理学报, 2014, 34(1):27-38. ZHOU Shuqing, HU Zhenhua, PENG Dongyun. Global regularity for very weak solutions to obstacle promlems corresponding to a class of A-harmonic equations[J]. Acta Mathematica Scientia, 2014, 34(1):27-38.[7] LI Gongbao, MARTIO O. Local and global integrability of gradients in obstacle problems[J]. Annales Academi Scientiarum Fennicæ(Series A. I. Mathematica), 1994, 19(1):25-34.[8] GIAQUINTA M. Multiple integrals in the calculus of variations and nonlinear elliptic systems[M]. New Jersey: Princeton University Press, 1983.[9] ELCRAT A, MEYERS N. Some results on regularity for non-linear elliptic systems and quasi-regular functions[J]. Duke Math J, 1975, 42(1):121-136.[10] IWANIEC T. Harmonic tensor and quasi-regular maps[J]. Ann Math, 1992, 136(3):589-624.[11] GILBARG D, TRUDINGER N S. Elliptic partial differential equations of second order[M]. Berlin: Springer, 2015.[12] 郑神州, 方爱农. 一类非线性椭圆组很弱解的正则性[J]. 数学学报, 1999, 42(1):119-124. ZHENG Shenzhou, FANG Ainong. Regularity of very weak solutions for a class of nonlinear elliptic systems[J]. Acta Mathematica Sinica, 1999, 42(1):119-124.
 [1] ZHANG Rui-min, LIN Ying-zhen. A new method of reproducing kernel for periodic boundary-value problem [J]. J4, 2013, 48(12): 42-46. [2] WU Yun,YAO Yang-xin,KE Min . Eigenvalue problems of bi-harmonic equations with Hardy potential [J]. J4, 2008, 43(9): 81-84 . [3] . Uniqueness of positive solutions of singular p-biharmonic equations with Hardy terms [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(6): 75-80. [4] XIAWU Ji-mao, HUANG Shui-bo, DENG De-jie. Existence of solutions for non-coercivity quasilinear elliptic equations with Hardy potential [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(10): 24-32.
Viewed
Full text

Abstract

Cited

Shared
Discussed