JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (1): 29-34.doi: 10.6040/j.issn.1671-9352.0.2020.157

Previous Articles     Next Articles

Matching equivalent classes of union graphs of two vertices and a path

XIE Cheng-ling, MA Hai-cheng*   

  1. School of Mathematics &
    Statistics, Qinghai Nationalities University, Xining 810007, Qinghai, China
  • Online:2021-01-20 Published:2021-01-05

Abstract: The number of the matching equivalent graphs of 2K1 ∪ Pm is calculated, and the matching equivalent classes of 2K1∪Pm and its complement graphs can also be characterized.

Key words: matching polynomial, matching equivalence, matching unique

CLC Number: 

  • O157.5
[1] GODSIL C D. Algebraic combinatorics[M]. London: Chapman and Hall, 1993.
[2] HEILMANN O J, LIEB E H. Theory of monomer-dimer systems[J]. Communications in Mathematical Physics, 1972, 25(3):190-232.
[3] GUTMAN I, WAGNER S. The matching energy of a graph[J]. Discrete Applied Mathematics, 2012, 160(15):2177-2187.
[4] HOSOYA H. Topological index: a newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons[J]. Bulletin of the Chemical Society of Japan, 1971, 44(9):2332-2339.
[5] GUTMAN I. A note on analogies between the characteristic and the matching polynomial of a graph[J]. Publ lizst Math, 1982, 31:27-31.
[6] GODSIL C D. Hermite polynomials and a duality relation for matchings polynomials[J]. Combinatorica, 1981, 1(3):257-262.
[7] FARRELL E J, WHITEHEAD E G. Connections between the matching and chromatic polynomials[J]. International Journal of Mathematics and Mathematical Sciences, 1992, 15(4):757-766.
[8] GODSIL C D, GUTMAN I. On the theory of the matching polynomial[J]. Journal of Graph Theory, 1981, 5(2):137-144.
[9] GODSIL C D, GUTMAN I. Some remarks on the matching polynomial and its zeros[J]. Croatica Chemica Acta, 1981, 54:53-59.
[10] 马海成. 两类图的匹配等价类[J]. 数学研究, 2000, 33(2):218-222. MA Haicheng. On the matching equivalent classes of two kind of graphs[J]. Mathematics Research, 2000, 33(2):218-222.
[11] 马海成. 点并路的匹配等价图类[J]. 青海师范大学学报(自然科学版), 2003(1):6-8. MA Haicheng. The matching equivalent classes of graphs of union of a point and a path[J]. Journal of Qinghai Normal University(Natural Science), 2003(1):6-8.
[12] 马海成. I形图的匹配等价图类[J]. 数学研究, 2002, 35(1):65-71. MA Haicheng. The matching equivalent classes of graphs of I[J]. Mathematics Research, 2002, 35(1):65-71.
[13] 马海成. K1∪In的匹配等价图类[J]. 兰州大学学报, 2005, 41(1):127-130. MA Haicheng. The matching equivalent classes of graphs of K1∪In[J]. Journal of Lanzhou University, 2005, 41(1):127-130.
[14] 马海成,赵海兴. 小度数或大度数图中的匹配唯一图[J]. 数学研究与评论, 2004(2):369-373. MA Haicheng, ZHAO Haixing. The matching unique graphs with large degree or small degree[J]. Journal of Mathematical Research and Exposition, 2004(2):369-373.
[1] LIU Xiao-hua, MA Hai-cheng. Order of matching energy and Hosoya index of Q-shape graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(8): 61-65.
Full text



No Suggested Reading articles found!