JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2020, Vol. 55 ›› Issue (12): 93-96.doi: 10.6040/j.issn.1671-9352.0.2020.366

Previous Articles    

Z2-extensions of a pointed fusion category and applications

DAI Li   

  1. College of Science, Nanjing Agricultural University, Nanjing 210031, Jiangsu, China
  • Published:2020-12-01

Abstract: Using the decomposition of the tensor product of a non-invertible simple object and its dual, the Z2-extensions of a pointed fusion category is studied. Then the universal grading structure of this class of fusion categories is given and their applications in the classification of semisimple Hopf algebras are discussed.

Key words: fusion category, extension, universal grading, semisimple Hopf algebra

CLC Number: 

  • O153
[1] KOBAYASHI T, MASUOKA A. A result extended from finite groups to Hopf algebras[J]. Tsukuba Journal of Mathematics, 1997, 21(1):55-58.
[2] NATALE S. Hopf algebra extensions of group algebras and Tambara-Yamagami categories[J]. Algebra and Representation Theory, 2010, 13(6):673-691.
[3] DONG Jingcheng. Slightly trivial extensions of a fusion category[J]. Archiv der Mathematikh, 2020, 114(1):19-24.
[4] GELAKI S, NIKSHYCH D. Nilpotent fusion categories[J]. Advance in Mathematics, 2008, 217(3):1053-1071.
[5] ETINGOF P, NIKSHYCH D, OSTRIK V. On fusion categories[J]. Annals of Mathematics, 2005, 162(2):581-642.
[6] NICHOLA W D, RICHMOND M B. The Grothendieck group of a Hopf algebra[J]. Journal of Pure and Applied Algebra, 1996, 106(3):297-306
[7] DONG Jingcheng, NATALE S, VENDRAMIN L. Frobenius property for fusion categories of small integral dimension[J]. Journal of Algebra and Its Applications, 2015, 14(2):1550011.
[8] FROHLICH J, KERLER T. Quantum groups, quantum categories and quantum field theory[M]. Lecture Notes in Mathematics, Vol. 1542, Berlin: Springer, 1993.
[9] NATALE S. Semisolvability of semisimple Hopf algebras of low dimension[J]. Memoirs of the American Mathematical Society, 2007, 186(874):1-123.
[1] HUANG Ju, FAN Xin-xiang. Limit categories of complete categories and η-extensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(8): 43-47.
[2] MA Li-li, LI Qiang. Abelian extensions of δ-Lie color algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(8): 38-42.
[3] DAI Lei, HUANG Xiao-jing, GUO Qi. Property(ω1)and the single-valued extension property [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(8): 55-61.
[4] WANG Zhan-ping, ZHANG Rui-jie. Ding projective modules over Frobenius extensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(12): 74-78.
[5] MA Guang-lin, WANG Yao, REN Yan-li. Some extensions of T-nilpotent rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(12): 68-73.
[6] LI Qiang, MA Li-li, WANG Xiao-yan, LYU Li-jiao. Abelian extensions of Hom-Jordan Lie algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 4-8.
[7] ZHANG Ying, CAO Xiao-hong, DAI Lei. Judgement of Weyls theorem for bounded linear operators [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 82-87.
[8] XU Hui, ZHAO Zhi-bing. Relative torsionless modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 75-80.
[9] CHEN Xiu-li, CHEN Jian-long. Homological dimensions with respect to semidualizing modules and excellent extensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 85-89.
[10] SONG Jia-jia, CAO Xiao-hong, DAI Lei. The judgement for the small compact perturbation of SVEP for upper triangular operator matrices [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 61-67.
[11] WANG Yao, ZHOU Yun, REN Yan-li. Strongly 2-good Rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 14-18.
[12] LIU Xiao-wei. Linear extension of isometries between the unit spheres of two-dimensional normed spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 44-48.
[13] SUN Wei-kun, LIN Han-xing. Representation dimension of one-point extension algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 85-91.
[14] FENG Qing, HUANG Ju. Two constructions of monoidal categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 30-34.
[15] WU Xue-li, CAO Xiao-hong, ZHANG Min. The perturbation of the single valued extension property for bounded linear operators [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 5-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!