JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2019, Vol. 54 ›› Issue (8): 55-61.doi: 10.6040/j.issn.1671-9352.0.2019.099
Previous Articles Next Articles
DAI Lei1, HUANG Xiao-jing1, GUO Qi2
CLC Number:
[1] WEYL H.(¨overU)ber beschr(¨overa)nkte quadratische formen, deren differenz vollstetig ist[J]. Rendiconti Del Circolo Matematico Di Palermo, 1909, 27(1):373-392. [2] RAKOCEVIC V. On a class of operators[J]. Matematicki Vesnik, 1985, 37(4):423-426. [3] RAKOCEVIC V. Operators obeying a-Weyls theorem[J]. Romanian Journal of Pure and Applied Mathematics, 1989, 34(10):915-919. [4] BERKANI M, KOLIHA J J. Weyl type theorems for bounded linear operators[J]. Acta Scientiarum Mathematicarum, 2003, 69(1):359-376. [5] SUN Chenhui, CAO Xiaohong, DAI Lei. Property(ω1)and Weyl type theorem[J]. Journal of Mathematical Analysis and Applications, 2010, 363(1):1-6. [6] ZENG Qingping, ZHONG Huaijie. A note on property(gb)and perturbations[J]. Abstract and Applied Analysis, 2012, 72(1):1-16. [7] DUNFORD N. Spectral theory II: resolution of the identity[J]. Pacific Journal of Mathematics, 1952, 2(4):559-614. [8] LAURSEN K B, NEUMANN M M. An introduction to local spectral theory[M]. Oxford: Clarendon Press, 2000. [9] AMOUCH A. Weyl type theorems for operators satisfying the single-valued extension property[J]. Journal of Mathematical Analysis and Applications, 2007, 326(2):1476-1484. [10] OUDGHIRI M. A-Weyls theorem and the single valued extension property[J]. Extracta Mathematicae, 2006, 21(1):41-50. [11] 戴磊, 曹小红. 单值延拓性质与广义(ω)性质[J]. 陕西师范大学学报(自然科学版), 2011, 39(2):17-22. DAI Lei, CAO Xiaohong. The single valued extension property and generalized property(ω)[J]. Journal of Shaanxi Normal University(Natural Science Edition), 2011, 39(2):17-22. [12] CONWAY J B. A course in functional analysis[M]. New York: Springer-Verlag, 2003: 181-182. [13] KITAI C. Invariant closed sets for linear operators[D]. Toronto: University of Toronto, 1982. [14] HERRERO D. Limits of hypercyclic and supercyclic operators[J]. Journal of Functional Analysis, 1991, 99(1):179-190. |
[1] | LIU Ying, CAO Xiao-hong. Consistent invertibility and the judgement of Weyls theorem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(6): 112-117. |
[2] | An-min ZHOU,Lei HU,Lu-ping LIU,Peng JIA,Liang LIU. Malicious Office document detection technology based on entropy time series [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(5): 1-7. |
[3] | Zhao-xia WU,Jia-qi WANG. Wireless single spectrum secure auction algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(11): 51-55. |
[4] | ZHANG Ying, CAO Xiao-hong, DAI Lei. Judgement of Weyls theorem for bounded linear operators [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 82-87. |
[5] | SONG Jia-jia, CAO Xiao-hong, DAI Lei. The judgement for the small compact perturbation of SVEP for upper triangular operator matrices [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 61-67. |
[6] | DAI Lei, CAO Xiao-hong. Property(z)and Weyl type theorem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 60-65. |
[7] | KONG Ying-ying, CAO Xiao-hong, DAI Lei. Judgement of a-Weyls theorem and its perturbations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 77-83. |
[8] | WU Xue-li, CAO Xiao-hong, ZHANG Min. The perturbation of the single valued extension property for bounded linear operators [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 5-9. |
[9] | CUI Miao-miao, WANG Bi-yu, CAO Xiao-hong. A note on operator matrixs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(10): 56-61. |
[10] | YANG Gong-lin, JI Pei-sheng. Some properties of primitive ideal submodules in Hilbert C*-modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(10): 50-55. |
[11] | CHEN Shi-zhao, CAO Xiao-hong*. Linear maps between operator algebras preserving the ascent and descent [J]. J4, 2013, 48(12): 86-89. |
[12] | LIU Yang. Some equivalent conditions of supercyclicity of bounded linear operators [J]. J4, 2013, 48(12): 75-79. |
[13] | LU Shi-fang1, WEI Liang2, ZHAO Hai-xing2. On signless Laplace integral graphs of complete tripartite graphs [J]. J4, 2012, 47(12): 41-46. |
[14] | LI Meng-qiao, ZHAO Xian-feng*, SHU Yong-lu. Supercyclic subspace of a separable Banach space [J]. J4, 2012, 47(10): 102-104. |
[15] | GAO Jie. Structure of eigenvalues of multi-point boundary value problems [J]. J4, 2011, 46(8): 17-22. |
|