JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2019, Vol. 54 ›› Issue (8): 55-61.doi: 10.6040/j.issn.1671-9352.0.2019.099

Previous Articles     Next Articles

Property(ω1)and the single-valued extension property

DAI Lei1, HUANG Xiao-jing1, GUO Qi2   

  1. 1. School of Mathematics and Physics, Weinan Normal University, Weinan 714099, Shaanxi, China;
    2. School of Mathematics and Information Science, Shaanxi Normal University, Xian 710119, Shaanxi, China
  • Online:2019-08-20 Published:2019-07-03

Abstract: A bounded linear operator T satisfies property(ω1), if the complement in the approximate point spectrum σa(T)of the upper semi-Weyl spectrum σea(T)is contained in the set of all isolated points of the spectrum σ(T)which are finite eigenvalues. In this paper, by means of the new spectrum defined in view of the single-valued extension property, the sufficient and necessary conditions for a bounded linear operator defined on a Hilbert space satisfying the property(ω1)are established. As an application, the property(ω1)for hypercyclic(or supercyclic)operators are characterised.

Key words: property(ω1), single-valued extension property, hypercyclic operator, supercyclic operator, spectrum

CLC Number: 

  • O177.2
[1] WEYL H.(¨overU)ber beschr(¨overa)nkte quadratische formen, deren differenz vollstetig ist[J]. Rendiconti Del Circolo Matematico Di Palermo, 1909, 27(1):373-392.
[2] RAKOCEVIC V. On a class of operators[J]. Matematicki Vesnik, 1985, 37(4):423-426.
[3] RAKOCEVIC V. Operators obeying a-Weyls theorem[J]. Romanian Journal of Pure and Applied Mathematics, 1989, 34(10):915-919.
[4] BERKANI M, KOLIHA J J. Weyl type theorems for bounded linear operators[J]. Acta Scientiarum Mathematicarum, 2003, 69(1):359-376.
[5] SUN Chenhui, CAO Xiaohong, DAI Lei. Property(ω1)and Weyl type theorem[J]. Journal of Mathematical Analysis and Applications, 2010, 363(1):1-6.
[6] ZENG Qingping, ZHONG Huaijie. A note on property(gb)and perturbations[J]. Abstract and Applied Analysis, 2012, 72(1):1-16.
[7] DUNFORD N. Spectral theory II: resolution of the identity[J]. Pacific Journal of Mathematics, 1952, 2(4):559-614.
[8] LAURSEN K B, NEUMANN M M. An introduction to local spectral theory[M]. Oxford: Clarendon Press, 2000.
[9] AMOUCH A. Weyl type theorems for operators satisfying the single-valued extension property[J]. Journal of Mathematical Analysis and Applications, 2007, 326(2):1476-1484.
[10] OUDGHIRI M. A-Weyls theorem and the single valued extension property[J]. Extracta Mathematicae, 2006, 21(1):41-50.
[11] 戴磊, 曹小红. 单值延拓性质与广义(ω)性质[J]. 陕西师范大学学报(自然科学版), 2011, 39(2):17-22. DAI Lei, CAO Xiaohong. The single valued extension property and generalized property(ω)[J]. Journal of Shaanxi Normal University(Natural Science Edition), 2011, 39(2):17-22.
[12] CONWAY J B. A course in functional analysis[M]. New York: Springer-Verlag, 2003: 181-182.
[13] KITAI C. Invariant closed sets for linear operators[D]. Toronto: University of Toronto, 1982.
[14] HERRERO D. Limits of hypercyclic and supercyclic operators[J]. Journal of Functional Analysis, 1991, 99(1):179-190.
[1] LIU Ying, CAO Xiao-hong. Consistent invertibility and the judgement of Weyls theorem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(6): 112-117.
[2] An-min ZHOU,Lei HU,Lu-ping LIU,Peng JIA,Liang LIU. Malicious Office document detection technology based on entropy time series [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(5): 1-7.
[3] Zhao-xia WU,Jia-qi WANG. Wireless single spectrum secure auction algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(11): 51-55.
[4] ZHANG Ying, CAO Xiao-hong, DAI Lei. Judgement of Weyls theorem for bounded linear operators [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 82-87.
[5] SONG Jia-jia, CAO Xiao-hong, DAI Lei. The judgement for the small compact perturbation of SVEP for upper triangular operator matrices [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 61-67.
[6] DAI Lei, CAO Xiao-hong. Property(z)and Weyl type theorem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 60-65.
[7] KONG Ying-ying, CAO Xiao-hong, DAI Lei. Judgement of a-Weyls theorem and its perturbations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 77-83.
[8] WU Xue-li, CAO Xiao-hong, ZHANG Min. The perturbation of the single valued extension property for bounded linear operators [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 5-9.
[9] CUI Miao-miao, WANG Bi-yu, CAO Xiao-hong. A note on operator matrixs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(10): 56-61.
[10] YANG Gong-lin, JI Pei-sheng. Some properties of primitive ideal submodules in Hilbert C*-modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(10): 50-55.
[11] CHEN Shi-zhao, CAO Xiao-hong*. Linear maps between operator algebras preserving the ascent and descent [J]. J4, 2013, 48(12): 86-89.
[12] LIU Yang. Some equivalent conditions of supercyclicity of bounded linear operators [J]. J4, 2013, 48(12): 75-79.
[13] LU Shi-fang1, WEI Liang2, ZHAO Hai-xing2. On signless Laplace integral graphs of complete tripartite graphs [J]. J4, 2012, 47(12): 41-46.
[14] LI Meng-qiao, ZHAO Xian-feng*, SHU Yong-lu. Supercyclic subspace of a separable Banach space [J]. J4, 2012, 47(10): 102-104.
[15] GAO Jie. Structure of eigenvalues of multi-point boundary value problems [J]. J4, 2011, 46(8): 17-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHAO Jun1, ZHAO Jing2, FAN Ting-jun1*, YUAN Wen-peng1,3, ZHANG Zheng1, CONG Ri-shan1. Purification and anti-tumor activity examination of water-soluble asterosaponin from Asterias rollestoni Bell[J]. J4, 2013, 48(1): 30 -35 .
[2] YANG Yong-wei1, 2, HE Peng-fei2, LI Yi-jun2,3. On strict filters of BL-algebras#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 63 -67 .
[3] LI Min1,2, LI Qi-qiang1. Observer-based sliding mode control of uncertain singular time-delay systems#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 37 -42 .
[4] SHI Ai-ling1, MA Ming2*, ZHENG Ying2. Customer lifetime value and property with #br# homogeneous Poisson response[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 96 -100 .
[5] TIAN Xue-gang, WANG Shao-ying. Solutions to the operator equation AXB=C[J]. J4, 2010, 45(6): 74 -80 .
[6] PANG Guan-song, ZHANG Li-sha, JIANG Sheng-yi*, KUANG Li-min, WU Mei-ling. A multi-level clustering approach based on noun phrases for search results[J]. J4, 2010, 45(7): 39 -44 .
[7] SUN Xiao-ting1, JIN Lan2*. Application of DOSY in oligosaccharide mixture analysis[J]. J4, 2013, 48(1): 43 -45 .
[8] REN Min1,2, ZHANG Guang-hui1. Absorbing probabilities of random walks in an independent random  environment convergence in distribution on the half-line[J]. J4, 2013, 48(1): 93 -99 .
[9] YU Xiu-qing. (σ,τ)-expansion model of P-sets and its properties#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(04): 90 -94 .
[10] WANG Gang, XU Xin-shun*. A new Multi-instance learning method for scene classification[J]. J4, 2010, 45(7): 108 -113 .