JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (4): 39-45.doi: 10.6040/j.issn.1671-9352.0.2020.422

Previous Articles    

Structure of semilinear spaces based on semi-tensor addition

LI Xiao-chao   

  1. School of Mathematics and Statistics, Huanghuai University, Zhumadian 463000, Henan, China
  • Published:2021-04-13

Abstract: Semi-tensor addition of matrices is a generalization of the usual matrix addition. Based on the semi-tensor addition of matrices, the matrix semilinear spaces on nonnegative real number semiring are obtained. The dimension, basis and direct sum of the matrix semilinear spaces are researched, and a necessary and sufficient condition for the sum of two subspaces to be a direct sum is given.

Key words: semi-tensor addition, semilinear space, dimension, direct sum

CLC Number: 

  • O153
[1] DI N A, LETTIERI A, PERFILIEVA I, et al. Algebraic analysis of fuzzy systems[J]. Fuzzy Sets and Systems, 2007, 158(1):1-22.
[2] SHU Qianyu, WANG Xueping. Bases in semilinear spaces over zerosumfree semirings[J]. Linear Algebra and Its Applications, 2011, 435(11):2681-2692.
[3] TAN Yijia. Bases in semimodules over commutative semirings[J]. Linear Algebra and Its Applications, 2014, 443:139-152.
[4] SHU Qianyu, WANG Xueping. Dimensional formulas of semilinear subspaces over semirings[J]. Linear and Multilinear Algebra, 2014, 62(11):1475-1490.
[5] 张后俊,储茂权. 交换半环上半线性空间的维数[J]. 山东大学学报(理学版), 2015, 50(6):45-52. ZHANG Houjun, CHU Maoquan. Dimensions of semilinear spaces over commutative semirings[J]. Journal of Shandong University(Natural Science), 2015, 50(6):45-52.
[6] 程代展,赵寅. 矩阵的半张量积:一个便捷的新工具[J]. 科学通报, 2011, 56(32):2664-2674. CHENG Daizhan, ZHAO Yin. Semi-tensor product of matrices: a convenient new tool[J]. Chinese Sci Bull, 2011, 56(32):2664-2674.
[7] CHENG Daizhan. On equivalence of matrices[J]. Asian J Mathematics, 2019, 23(2):257-348.
[8] 张贤达. 矩阵分析与应用[M]. 北京:清华大学出版社,2004. ZHANG Xianda. Matrix analysis and application[M]. Beijing: Tsinghua University Press, 2004.
[9] CHENG Daizhan. From dimension-free matrix theory to cross-dimensional dynamic[M]. London: Academic Press, 2019.
[10] ZIMMERMANN U. Linear and combinatorial optimization in ordered algebraic structures[M]. Amsterdam: North Holland Press, 1981.
[11] REUTENAUER C, STRAUBING H. Inversion of matrices over a commutative semiring[J]. Journal of Algebra, 1984, 88(2):350-360.
[1] GUO Hui-ying, YANG Fu-xia, ZHANG Cui-ping. Stability of modules with finite Ext-strongly Ding projective dimensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(4): 31-38.
[2] LAN Kai-yang, YANG Ting-ting. Some characterizations of a class of special morphisms of modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(8): 54-58.
[3] LIU Jing-shu, WANG Li, LIU Jing-lei. Nyström extension based on circulant matrix projection [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(7): 55-66.
[4] LIU Yan-ping. GI-modules and coreflexive complexes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(4): 32-40.
[5] LIU Ting, ZHANG Wen-hui. Gorenstein IFP-Flat modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(2): 91-98.
[6] QIAO Ning, FANG Ying, ZHANG Liang-yun. Structure of Poisson algebras on Sweedler 4-dimensional Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(12): 56-62.
[7] LI Xiao-chao. Upper(Lower)approximation based on congruence on free semilinear spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 15-19.
[8] ZHANG Qian, LI Xuan, LI Xin, ZHENG Hui-hui, LI Lin-han, ZHANG Liang-yun. The construct of Rota-Baxter algebra on the Sweedler 4-dimensional Hopf algebra [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(6): 47-52.
[9] ZHANG Ming, ZHANG Wen-hui. n-Ding projective and n-Ding injective modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(4): 60-66.
[10] ZENG Xue-qiang, YE Zhen-lin, ZUO Jia-li, WAN Zhong-ying, WU Shui-xiu. A chunk increment partial least square algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(3): 93-101.
[11] FENG Yao-yao, YAO Hai-lou. Finitely presented dimensions on recollements of Abelian categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(2): 89-94.
[12] LIN Guo-guang, LI Zhuo-xi. Attractor family and dimension for a class of high-order nonlinear Kirchhoff equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(12): 1-11.
[13] WANG Zhan-ping, ZHANG Rui-jie. Ding projective modules over Frobenius extensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(12): 74-78.
[14] ZHOU Xiao-ying, LIANG Yu, DONG Zhi, LI Hong-li, ZHANG Meng-xuan, HAN Xiu-feng, FAN Xiao-li, FANG Yong. Effects of Piriformospora indica on growth and root morphology of Pinus thunbergii seedlings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(7): 7-14.
[15] . FR-injective and FR-flat dimensions of complexes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!