JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2022, Vol. 57 ›› Issue (6): 15-22.doi: 10.6040/j.issn.1671-9352.0.2021.135

Previous Articles    

Greens relations on a class of semiring which multiplicative reduct is an idempotent semigroup

WANG Jun-ling, SHAO Yong*   

  1. School of Mathematics, Northwest University, Xian 710127, Shaanxi, China
  • Published:2022-06-10

Abstract: The multiplicatively idempotent semirings satisfying the identities x+x+x=x, 2x+2y=2(x+y) are studied. The characterizations of the binary relations(·overL)∧(+overD),(·overL)∧(+overL),(·overL)∧(+overR),(+overL)∧(·overD)related to the Greens relation of the multiplicative semigroups(additive semigroups)of the semirings are given, and the sufficient and necessary conditions which make these binary relations be congruences are obtained. Moreover, the classes of semirings which are determined by these congruences are proved to be semiring varieties.

Key words: semiring, variety, congruences, Greens relations

CLC Number: 

  • O151.21
[1] VANDIVER H S. Note on a simple type of algebra in which the cancellation law of addition does not hold[J]. Bulletin of the American Mathematical Society, 1934, 40(12):914-920.
[2] HOWIE J M. Fundamentals of semigroup sheory[M] //Algebra Colloquium. London: Clarendon Press, 1995.
[3] GREEN J A. The structure of semigroups[J]. Ann Math, 1951, 54(2):163-172.
[4] PETRICH M, REILLY N R. Completely regular semigroup[M]. New York: Wiley, 1999.
[5] 郭聿琦,宫春梅,任学明.关于半群上格林关系的一个来龙去脉的综述(英文)[J]. 山东大学学报(理学版), 2010, 45(8):1-18. GUO Yuqi, GONG Chunmei, REN Xueming. A survey on the origin and developments of Greens relations on semigroups[J]. Journal of Shandong University(Natural Science), 2010, 45(8):1-18.
[6] CHENG Y L, SHAO Y. Semiring varieties related to multiplicative Greens relations on a semiring[J]. Semigroup Forum, 2020, 101(3):571-584.
[7] DAMLIJANOVIC N, CIRIC M, BOGDANOVIC S. Congruence openings of additive Greens relations on a semiring[J]. Semiring Forum, 2011, 82(3):437-454.
[8] ZHAO X Z, SHUM K P, GUO Y Q. L-subvarieties of the variety of idempotent semirings[J]. Algebra Univers, 2001, 46(1/2):75-96.
[9] PASTIJN F, ZHAO X Z. Greens D -relation for the multiplicative reduct of an idempotent semiring[J]. Arch Math(Brno), 2000, 36(2):77-93.
[10] ZHAO X Z, GUO Y Q, SHUM K P. D -subvarieties of the variety of idempotent semirings[J]. Algebra Colloquium, 2002, 9:15-28.
[11] 练利锋, 任苗苗, 陈益智. 关于一类半环上的格林关系的若干研究[J]. 纯粹数学与应用数学, 2014, 30(4):420-427. LIAN Lifeng, REN Miaomiao, CHEN Yizhi. Several studies of Greens relations on a class of semiring[J]. Pure and Applied Mathematics, 2014, 30(4):420-427.
[12] 王爱法. 满足某些恒等式的半环上的格林关系[J]. 西南大学学报(自然科学版), 2017, 39(12):67-73. WANG Aifa. Greens relations in semirings satisfying some identities[J]. Journal of Southwest University(Natural Science Edition), 2017, 39(12):67-73.
[13] VECHTOMOV E M, PETROV A A. Multiplicatively idempotent semirings[J]. Journal of Mathematical Sciences, 2015, 206(6):634-653.
[14] BURRIS S, SANKAPPANAVAR H P. A course in universal algebra[M]. New York: Springer-Verlag, 1981.
[1] WANG Jing, GONG Chun-mei. Tropical matrix semigroups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(2): 50-55.
[2] CUI Qian, GONG Chun-mei, WANG Hui. (~)-Good congruences on Rees matrix semigroups over semiadequate semigroups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(2): 61-66.
[3] WEI Meng-jun, LI Gang. The property and structure of left Clifford bi-semirings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(8): 45-48.
[4] CHENG Yan-liang, SHAO Yong. Semiring varieties defined by Greens relations on a semiring [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(4): 1-7.
[5] GONG Chun-mei, ZHANG Jun-mei. (~)-good congruences on regular ortho-u-monoids [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(4): 6-12.
[6] WU Dan-dan, GONG Chun-mei. The(~)-good congruences on normal ortho-u-monoids [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(4): 45-53.
[7] GONG Chun-mei, FENG Li-xia, REN Xue-ming. (*,~)-good congruences on completely J *,~-simple semigroups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 11-16.
[8] WANG Dan, WANG Zheng-pan. Characterizing a band variety in terms of forbidden subsemigroups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 6-8.
[9] LI Chun-hua, XU Bao-gen, HUANG Hua-wei. Unipotent congruences on a proper weakly left type B semigroup [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 49-52.
[10] XU Ge-ni, LI Yong-ming. On conditions for transfer function to preserve solution configuration of semiring-induced valuation algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(08): 51-56.
[11] ZHANG Hou-jun, CHU Mao-quan. Dimensions of semilinear spaces over commutative semirings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(06): 45-52.
[12] ZHOU Chao, YAN Xin, YU Zheng-tao, HONG Xu-dong, XIAN Yan-tuan. Weibo new word recognition combining frequency characteristic and accessor variety [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(03): 6-10.
[13] LIU Yi1,2, XU Yang2, QIN Xiao-yan 2, QIN Ya3. TL-filters and TL-congruences of residuated lattices [J]. J4, 2012, 47(2): 98-103.
[14] WANG Ling-Yun. Distributive congruences on semirings [J]. J4, 2009, 44(9): 63-65.
[15] LIU Hong-xing . A strong distributive lattice of quotient semirings [J]. J4, 2006, 41(6): 43-45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!