JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2018, Vol. 53 ›› Issue (6): 11-16.doi: 10.6040/j.issn.1671-9352.0.2017.284

Previous Articles     Next Articles

(*,~)-good congruences on completely J *,~-simple semigroups

GONG Chun-mei, FENG Li-xia, REN Xue-ming   

  1. School of Science, Xian University of Architecture and Technology, Xian 710055, Shaanxi, China
  • Received:2017-06-07 Online:2018-06-20 Published:2018-06-13

Abstract: It is characterized that the(*,~)-good congruences on completely J *,~-simple semigroups by means of(*,~)-good congruences pairs. Some results about congruences on completely simple semigroups in regular semigroups are generalized to r-wide semigroups, and this establishes the foundation to investigate good congruences over super r-wide semigroups.

Key words: completely J *,~-simple semigroups, Rees matrix semigroups, left cancellative monoids, (*,~)-good congruences

CLC Number: 

  • O152.7
[1] GUO Yuqi, SHUM K P, GONG Chunmei. On(*,~)-Greens relations and ortho-lc-monoids[J]. Communication in Algebra, 2011, 39(1):5-31.
[2] 宫春梅,张笛,袁莹. 完全J *,~单半群的结构[J].西南师范大学学报(自然科学版),2011, 34(2):31-38. GONG Chunmei, ZHANG Di, YUAN Ying. The structure of completely J *,~-simple semigroups[J]. Journal of Southwest Normal University(Natural Science Edition), 2011, 34(2):31-38.
[3] 郭聿琦,宫春梅,孔祥智. 正则纯正左消幺半群并半群上的(*,~)-好同余[J].代数集刊,2014, 21(2):235-248. GUO Yuqi, GONG Chunmei, KONG Xiangzhi.(*,~)-good congruences on regular ortho-lc-monoids[J]. Algebra Colloquium, 2014, 21(2):235-248.
[4] 宫春梅,任学明,袁莹.正规纯正左消幺半群并半群上的(*,~)-好同余[J]. 数学进展,2015,44(3):369-378. GONG Chunmei, REN Xueming,YUAN Ying. The(*,~)-good congruences on normal ortho-lc-monoids[J]. Advances in Mathematics(China), 2015, 44(3):369-378.
[5] 李春华,郭小江,刘二根. 适当半群完备矩形带上的好同余[J].数学进展,2009, 38(4):465-476. LI Chunhua, GUO Xiaojiang, LIU Ergen. Good congruences on perfect rectangular bands of adequate semigroups[J]. Advances in Mathematics(China), 2009, 38(4):465-476.
[6] HOWIE J M. Fundamentals of semigroup theory[M]. Oxford: Oxford Science Publications, 1995.
[7] FOUNTAIN J B. Abundant semigroups[J]. Proc London Math Soc, 1982, 44(3):103-129.
[1] SHAO Yong. Semilattice-ordered completely regular periodic semigroups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 1-5.
[2] WANG Dan, WANG Zheng-pan. Characterizing a band variety in terms of forbidden subsemigroups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 6-8.
[3] LIANG Xing-liang, WU Su-peng, REN Jun. Characterization of monoids by C(P')acts [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 9-13.
[4] QIAO Hu-sheng, SHI Xue-qin. On homological classification of weakly torsion free Rees factor S-posets [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(8): 49-52.
[5] QIAO Hu-sheng, ZHAO Ting-ting. On products of S-acts [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 16-19.
[6] WANG Shou-feng. λ-Semidirect products of regular semigroups with a multiplicative inverse transversal [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 20-23.
[7] QIAO Hu-sheng, LIAO Min-ying. GP-coherent monoids [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 1-4.
[8] WANG Yong-duo, MA Ya-jun. Simple dual Rickart modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 5-9.
[9] QIAO Hu-sheng, JIN Wen-gang. On monoids over which all weakly injective right S-acts are regular [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 1-3.
[10] LUO Yong-gui. Maximal(regular)subsemigroups of the semigroup W(n,r) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 7-11.
[11] WANG Yong-duo, HE Jian. Characterizations of rings relative to an ideal [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 81-84.
[12] WANG Shou-feng. Prehomomorphisms and restricted products of regular semigroups with a multiplicative inverse transversal [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 90-93.
[13] QIAO Hu-sheng, BAI Yong-fa. Characterization of monoids by inverse S-acts [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 1-4.
[14] LI Chun-hua, XU Bao-gen, HUANG Hua-wei. Unipotent congruences on a proper weakly left type B semigroup [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 49-52.
[15] WEN Hai-cun, QIAO Hu-sheng. Pomonoids over which all strongly flat left S-posets are I-regular [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 35-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!