JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2018, Vol. 53 ›› Issue (4): 20-23.doi: 10.6040/j.issn.1671-9352.0.2017.570

Previous Articles     Next Articles

λ-Semidirect products of regular semigroups with a multiplicative inverse transversal

WANG Shou-feng1,2   

  1. 1. School of Mathematics, Yunnan Normal University, Kunming 650500, Yunnan, China;
    2. School of Mathematics, Shandong University, Jinan 250100, Shandong, China
  • Received:2017-10-31 Online:2018-04-20 Published:2018-04-13

Abstract: λ-Semidirect products of regular semigroups with a multiplicative inverse transversal are introduced. It is proved that the λ-semidirect of two regular semigroups with a multiplicative inverse transversal is always a regular semigroup with a multiplicative inverse transversal, which generalizes the related results of inverse semigroups.

Key words: regular semigroup, multiplicative inverse transversal, λ-semidirect

CLC Number: 

  • O152.7
[1] BLYTH T S, MCFADDEN R B. Regular semigroups with a multiplicative inverse transversal[J]. Proc Roy Soc Edinburgh, 1982, 92A:253-270.
[2] BLYTH T S. Inverse transversals—a guided tour[C] // Semigroups: Proceedings of the international conference(Braga, 1999). River Edge, NJ: World Sci Publ, 2000: 26-43.
[3] TANG Xilin. Regular semigroups with inverse transversals[J]. Semigroup Forum,1997, 55:24-32.
[4] TANG Xilin. Identities for a class of regular unary semigroups[J]. Communications in Algebra, 2008, 36:2487-2502.
[5] TANG Xilin, GU Ze. Words on free bands with inverse transversals[J]. Semigroup Forum, 2015, 91:101-116.
[6] 王守峰.具有可乘逆断面的正则半群上的预同态和限制积[J].山东大学学报(理学版), 2017, 52(8):90-93, 99. WANG Shoufeng. Prehomomorphisms and restricted products of regular semigroups with a multiplicative inverse transversal[J]. Journal of Shandong University(Natural Science), 2017, 52(8):90-93, 99.
[7] BILLHARDT B. On a wreath product embedding and idempotent pure congruences on inverse semigroups[J]. Semigroup Forum, 1992, 45:45-54.
[8] LAWSON M V. Inverse semigroups, the theory of partial symmetries[M]. London: World Sci Publ, 1998: 75-82.
[9] PETRICH M, REILLY N R. Completely regular semigroups[M]. New York: John Wiley and & Sons Inc, 1999: 48-56.
[1] WANG Shou-feng. Prehomomorphisms and restricted products of regular semigroups with a multiplicative inverse transversal [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 90-93.
[2] CHEN Lu. Intra-regular semigroups of N(2,2,0)algebra [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(12): 24-28.
[3] SUN Yan, REN Xue-ming. Admissible congruence pairs on C-quasiregular semigroups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 81-84.
[4] SU Yu, KONG Xiang-zhi*. LρC-regular semigroups [J]. J4, 2011, 46(4): 68-69.
[5] YUAN Zhi-ling . Construction of regular semigroups with orthodox transversals [J]. J4, 2008, 43(8): 35-37 .
[6] BI Xiao-dong . A constructing method for completely regular semigroup [J]. J4, 2007, 42(1): 40-43 .
[7] XING Jian-min . LR-normal orthogroup congruence on regular semigroups [J]. J4, 2006, 41(1): 41-44 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!