JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (8): 90-93.doi: 10.6040/j.issn.1671-9352.0.2016.507

Previous Articles     Next Articles

Prehomomorphisms and restricted products of regular semigroups with a multiplicative inverse transversal

WANG Shou-feng   

  1. School of Mathematics, Yunnan Normal University, Kunming 650500, Yunnan, China
  • Received:2016-11-03 Online:2017-08-20 Published:2017-08-03

Abstract: Prehomomorphisms and restricted products of regular semigroups with a multiplicative inverse transversal are introduced. It is proved that the class of regular semigroups with a multiplicative inverse transversal together with prehomomorphisms form a category, by using restricted products some characterizations of prehomomorphisms between two regular semigroups with a multiplicative inverse transversal are obtained.

Key words: multiplicative inverse transversal, restricted product, prehomomorphism, category, regular semigroup

CLC Number: 

  • O152.7
[1] BLYTH T S, MCFADDEN R B. Regular semigroups with a multiplicative inverse transversal[J]. Proc Roy Soc Edinburgh, 1982, 92A:253-270.
[2] BLYTH T S. Inverse transversals-a guided tour[C] //Semigroups: Proceedings of the international conference(Braga, 1999). River Edge, New Jersey: World Sci Publ, 2000: 26-43.
[3] TANG Xilin. Regular semigroups with inverse transversals[J]. Semigroup Forum,1997, 55:24-32.
[4] TANG Xilin. Identities for a class of regular unary semigroups[J]. Communications in Algebra, 2008, 36:2487-2502.
[5] TANG Xilin, GU Ze. Words on free bands with inverse transversals[J]. Semigroup Forum, 2015, 91:101-116.
[6] MCALISTER D B. v-Prehomomorphisms on inverse semigroups[J]. Pac J Math, 1976, 67:215-231.
[7] MCALISTER D B, REILLY N R. E-unitary covers for inverse semigroups[J]. Pac J Math, 1977, 68:161-174.
[8] LAWSON M V. Inverse semigroups, the theory of partial symmetries[M]. London:World Sci Publ, 1998:75-82.
[9] PETRICH M, REILLY N R. Completely regular semigroups[M]. New York: John Wiley and & Sons Inc, 1999: 48-56.
[10] KNAUER U. Algebraic graph theory, morphisms, monoids and matrices[M]. Berlin: De Gruyter, 2011: 48-50.
[1] WANG Shou-feng. λ-Semidirect products of regular semigroups with a multiplicative inverse transversal [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 20-23.
[2] CHEN Hua-xi, XU Qing-bing. The fundamental theorem forAMHH in Yetter-Drinfeld module categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 107-110.
[3] GUO Shuang-jian, LI Yi-zheng. When is BHQ a pre-braided category over quasi-Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 10-15.
[4] LIU Ni, ZHANG Miao-miao. Continuous directed-complete ordered semigroups and their categorical properties [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 57-64.
[5] FENG Qing, HUANG Ju. Two constructions of monoidal categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 30-34.
[6] CHEN Lu. Intra-regular semigroups of N(2,2,0)algebra [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(12): 24-28.
[7] SUN Yan, REN Xue-ming. Admissible congruence pairs on C-quasiregular semigroups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 81-84.
[8] LIANG Shao-hui. The category of E-quantales [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 47-53.
[9] LIU Yang1, WANG Zheng-ping2, XU Qing-bing2. The Gabriel monad and the localization of R-module category [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(2): 24-28.
[10] GUO Shuang-jian1, DONG Li-hong2. Engel’s theorem for generalized H-Lie algebras#br# [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(04): 55-57.
[11] LI Hai-yang. The direct limits in the category of closedset lattices [J]. J4, 2013, 48(6): 100-103.
[12] WANG Sheng-xiang1,2, GUO Shuang-jian2. Hom-Hopf modules for a class of symmetric categories [J]. J4, 2013, 48(4): 40-45.
[13] On the quotient category and localization of an R-module Category. On the quotient category and localization of an R-module Category [J]. J4, 2013, 48(4): 46-50.
[14] DONG Li-hong1,2, GUO Shuang-jian1. The fundamental theorem for weak Hopf module in  Yetter-Drinfeld module categories [J]. J4, 2013, 48(2): 20-22.
[15] CHEN Hua-xi1, ZHANG Xiao-hui2, XU Qing-bing3. The Structure Theorem of weak comodule algebras in
Yetter-Drinfeld module categories
[J]. J4, 2013, 48(12): 14-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!