JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2016, Vol. 51 ›› Issue (12): 24-28.doi: 10.6040/j.issn.1671-9352.0.2016.147

Previous Articles     Next Articles

Intra-regular semigroups of N(2,2,0)algebra

CHEN Lu   

  1. School of Mathematics and Computer Science, Shaanxi Sci-Tech University, Hanzhong 723001, Shaanxi, China
  • Received:2016-04-06 Online:2016-12-20 Published:2016-12-20

Abstract: Some description about intra-regularity of semigroups of N(2,2,0)algebra is given. Some properties about two special sets P(a), H(a) and left(right)nil element of semigroups of N(2,2,0)algebra are discussed. It is provided that a relationships between left(right)nil element and regular element and intra-regular element.

Key words: N(2,2,0)algebra, left nil element, intra-regular element, intra-regular semigroups

CLC Number: 

  • O153
[1] 邓方安,徐扬.关于N(2,2,0)代数[J].西南交通大学学报,1996,31(4):457-463. DENG Fang-an, XU Yang. On N(2,2,0)algebras[J]. Journal of Southwest Jiaotong University, 1996, 31(4):457-463.
[2] 陈露.关于N(2,2,0)代数的中间幂等元[J].纯粹数学与应用数学,2011,27(4):433-436. CHEN Lu. Medial idempotents of N(2,2,0)algebra[J]. Pure and Applied Mathematics, 2011, 27(4):433-436.
[3] 陈露.关于N(2,2,0)代数的中间单位[J].黑龙江大学自然科学学报,2014,31(3):287-290. CHEN Lu. On middle units in N(2,2,0)algebra[J]. Journal of Natural Science of Heilongjiang University, 2014, 31(3):287-290.
[4] 邓方安,徐扬,袁俭.N(2,2,0)代数的理想与关联理想[J].汉中师范学院学报,1998,16(1):6-9. DENG Fang-an, XU Yang, YUAN Jian. Ideal and relevant ideal of N(2,2,0)algebra[J]. Journal of Hanzhong Teachers College, 1998, 16(1): 6-9.
[5] 邓方安,雍龙泉. N(2,2,0)代数的正则半群[J].数学进展,2012, 41(6): 665-671. DENG Fang-an, YONG Longquan. Regular semigroups of N(2,2,0)algebra[J]. Advances in Mathematics, 2012, 41(6):665-671.
[6] 邓方安.N(2,2,0)代数的RC-半群[J].山东大学学报(理学版),2011,46(6):8-11. DENG Fang-an. RC-semigroups of N(2,2,0)algebra[J]. Journal of Shandong University(Natural Science), 2011, 46(1):8-11.
[7] 邓方安.N(2,2,0)代数的E-反演半群[J].数学杂志,2014, 34(5):977-984. DENG Fang-an. E-inversive semigroups of N(2,2,0)algebra[J]. Journal of Mathematics, 2014, 34(5):977-984.
[8] 李旭东. N(2,2,0)代数的稳定化子[J].山东大学学报(理学版), 2011,46(8):68-72. LI Xudong. Stabilizer of N(2,2,0)algebras[J]. Journal of Shandong University(Natural Science), 2011,46(8):68-72.
[9] 张建忠,傅小波,廖祖华.N(2,2,0)代数的(∈, ∈∨q(λ, μ))-模糊正关联理想[J].计算机科学与探索,2014,8(5):622-629. ZHANG Jianzhong, FU Xiaobo, LIAO Zuhua. (∈, ∈∨q(λ, μ))-Fuzzy positive implicative ideal of N(2,2,0)algebras[J]. Journal of Frontiers of Computer Science and Technology, 2014, 8(5):622-629.
[10] 张建忠,傅小波,廖祖华.N(2,2,0)代数的(∈, ∈∨q(λ, μ))-模糊理想[J].计算机科学与探索, 2013,7(11):1048-1056. ZHANG Jianzhong, FU Xiaobo, LIAO Zuhua. (∈, ∈∨q(λ, μ))-Fuzzy Ideal of N(2,2,0)algebras[J]. Journal of Frontiers of Computer Science and Technology, 2013, 7(11):1048-1056.
[11] 傅小波,廖祖华.N(2,2,0)代数的(∈δ, ∈δ∨qδ(λ, μ))-模糊理想[J].计算机科学与探索,2016,10(3):1-9. FU Xiaobo, LIAO Zuhua. (∈δ, ∈δ∨qδ(λ, μ))-Fuzzy Ideals of N(2,2,0)algebras[J]. Journal of Frontiers of Computer Science and Technology, 2016, 10(3):1-9.
[12] NAGY A. Regular RGCn-commutative semigroups[J]. Scientia Iranica, 2005, 12(1):10-13.
[1] WU Xiao-ying, WANG Fang-gui. Graded version of Enochs theorem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 22-26.
[2] . Representative forms of commutative BR0-algebras on a set by implication operator [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 86-94.
[3] CHENG Cheng, ZOU Shi-jia. Irreducible splitting trace module of a class of Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 11-15.
[4] LIU Chun-hui. On(∈,∈∨q(λ, μ))-fuzzy LI-ideals in lattice implication algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 65-72.
[5] WANG Hai-wei, ZHAO Bin. The projective objects in the category of Q-sup-algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 73-82.
[6] ZHU Lin. Separated monic representations of quivers of type A4and RSS equivalences [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 1-8.
[7] PENG Jia-yin. Falling fuzzy filters on residuated lattices [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 52-64.
[8] WANG Hui-xing, CUI Jian, CHEN Yi-ning. Nil *-clean rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 16-24.
[9] GUO Shuang-jian, LI Yi-zheng. When is BHQ a pre-braided category over quasi-Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 10-15.
[10] LU Dao-wei, WANG Zhen. L-R smash product for bialgebroids [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 32-35.
[11] LI Jin-lan, LIANG Chun-li. Strongly Gorenstein C-flat modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 25-31.
[12] SUN Yan-zhong, YANG Xiao-yan. Gorenstein AC-projective modules with respect to a semidualizing module [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 31-35.
[13] MA Xin, ZHAO You-yi, NIU Xue-na. Homology resolutions and homological dimensions of complexes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 18-23.
[14] LIU Chun-hui. Lattice of(,∨(-overq))-fuzzy filters in a BL-algebra [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 104-110.
[15] . Gelfand-Krillov dimension of quantized enveloping algebra Uq(An) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 12-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!