JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (8): 81-84.doi: 10.6040/j.issn.1671-9352.0.2016.432

Previous Articles     Next Articles

Characterizations of rings relative to an ideal

WANG Yong-duo, HE Jian*   

  1. School of Science, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
  • Received:2016-09-18 Online:2017-08-20 Published:2017-08-03

Abstract: Let I be an ideal of a ring R. The concept of pseudo semiprojective I-covers is introduced. It is shown that every left R-module has a pseudo semiprojective I-cover if and only if every left R-module has a proj-ective I-cover. It is also proved that the class of all pseudo semiprojective modules is a projectivity class, and then some well known results are generalized.

Key words: semiregular ring, pseudo semiprojective module, semiperfect ring, projectivity class

CLC Number: 

  • O152.7
[1] QUYNH T C. On pseudo semi-projective modules[J]. Turkish Journal of Mathematics, 2013, 37(1):27-36.
[2] ALKAN M, NICHOLSON W K, OZCAN A C. A generalization of projective covers[J]. Journal of Algebra, 2008, 319:4947-4960.
[3] WANG Yongduo. Characterizations of I-semiregular and I-semiperfect rings[J/OL]. arXiv preprint arXiv: 1108.2083, 2011.
[4] WANG Dingguo. Rings characterized by projectivity classes[J]. Comm in Algebra, 1997, 25(1):105-116.
[5] KALEBOGAZ B, KESKIN D. A study on semi-projective covers, semi-projective modules and formal triangular matrix rings[J]. Palestine J Math, 2014, 3(1):374-382.
[6] ANDERSON B F W,FULLER K R. Rings and categories of modules[M]. New York: Springe-Verlag, 1974.
[7] ZHOU Yiqiang. Generalizations of perfect, semiperfect, and semiregular rings[J]. Algebra Colloq, 2000, 7(3):305-318.
[8] OZCAN A C, ALCAN M. Semiperfect modules with respect to a preradical[J]. Comm in Algebra, 2006, 34(3):841-856.
[9] NICHOLSON W K,YOUSIF M F. Quasi-frobenius rings[M]. Cambridge: Cambridge University Press, 2003.
[10] TUGANBAEV A. Rings close to regular[M]. Dordrecht: Kluwer Academic Publishers, 2002.
[11] WANG Yongduo, WU Dejun. A generalization of supplemented modules[J]. Hacettepe J Math and Stat, 2016, 45(1):129-137.
[12] KESKIN D,KURATOMI Y. On epi-projective modules[J]. East-West J Math, 2008, 10(1):27-35.
[13] FACCHINI A, SMERTNIG D, TUNG N K. Cyclically presented modules, projective covers and factorizations[M] // DV Huynh, SK Jain, SR Lpez-Permouth, et al. Proceedings volume in honor of TY Lam, Contemporary Math: Ring Theory and Its Applications. Providence, Rhode Island: American Mathematical Society, 2014, 609: 89-106.
[1] SHAO Yong. Semilattice-ordered completely regular periodic semigroups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 1-5.
[2] WANG Dan, WANG Zheng-pan. Characterizing a band variety in terms of forbidden subsemigroups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 6-8.
[3] LIANG Xing-liang, WU Su-peng, REN Jun. Characterization of monoids by C(P')acts [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 9-13.
[4] QIAO Hu-sheng, SHI Xue-qin. On homological classification of weakly torsion free Rees factor S-posets [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(8): 49-52.
[5] GONG Chun-mei, FENG Li-xia, REN Xue-ming. (*,~)-good congruences on completely J *,~-simple semigroups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 11-16.
[6] QIAO Hu-sheng, ZHAO Ting-ting. On products of S-acts [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 16-19.
[7] WANG Shou-feng. λ-Semidirect products of regular semigroups with a multiplicative inverse transversal [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 20-23.
[8] QIAO Hu-sheng, LIAO Min-ying. GP-coherent monoids [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 1-4.
[9] WANG Yong-duo, MA Ya-jun. Simple dual Rickart modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 5-9.
[10] QIAO Hu-sheng, JIN Wen-gang. On monoids over which all weakly injective right S-acts are regular [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 1-3.
[11] LUO Yong-gui. Maximal(regular)subsemigroups of the semigroup W(n,r) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 7-11.
[12] WANG Shou-feng. Prehomomorphisms and restricted products of regular semigroups with a multiplicative inverse transversal [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 90-93.
[13] QIAO Hu-sheng, BAI Yong-fa. Characterization of monoids by inverse S-acts [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 1-4.
[14] LI Chun-hua, XU Bao-gen, HUANG Hua-wei. Unipotent congruences on a proper weakly left type B semigroup [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 49-52.
[15] WEN Hai-cun, QIAO Hu-sheng. Pomonoids over which all strongly flat left S-posets are I-regular [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 35-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!