JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (12): 67-71.doi: 10.6040/j.issn.1671-9352.0.2021.192

Previous Articles    

Jordan and Lie centralizers on quaternion rings

CAO Mei-hong, ZHANG Jian-hua*   

  1. School of Mathematics and Statistics, Shaanxi Normal University, Xian 710119, Shaanxi, China
  • Published:2021-11-25

Abstract: Let S be a ring, H(S) be the quaternion ring on S. By studying Jordan centralizers and Lie centralizers on H(S), this paper obtains the sufficient condition for a centralizer to be proper. Further its proved that every Jordan centralizer is a centralizer on H(S) under certain assumption. Moreover, several equivalent conditions are given that the addictive mapping φ on H(S) is centralizer.

Key words: quaternion ring, Jordan centralizer, Lie centralizer

CLC Number: 

  • O177.1
[1] ZALAR B. On centralizers of semiprime rings[J]. Commentations Mathematicae Universitatis Carolinae, 1991, 32(4):609-614.
[2] LIU Lei. On nonlinear Lie centralizers of generalized matrix algebras[J/OL]. Linear and Multilinear Algebra, 2020[2021-09-16] , https://doi.org/10.1080/03081087.2020.1810605.
[3] LIU Lei. On Jordan centralizers of triangular algebras[J]. Banach Journal of Mathematical Analysis, 2016, 10(2):223-234.
[4] JABEEN A. Lie(Jordan)centralizers on generalized matrix algebras[J]. Communications in Algebra, 2020, 49(1):278-291.
[5] FOŠNER A, WU Jing. Lie centralizers on triangular algebras and nest algebras[J]. Advances in Operator Theory, 2019, 4(2):342-350.
[6] 杨翠, 张建华. 套代数上广义Jordan中心化子[J]. 数学学报(中文版), 2010, 53(5):975-980. YANG Cui, ZHANG Jianhua. Generalized Jordan centralizers on nest algebras[J]. Acta Mathematica Sinica(Chinese Series), 2010, 53(5):975-980.
[7] GHAHRAMANI H, GHOSSEIRI M N, ZADEH L H. On the Lie derivations and generalized Lie derivations of quaternion rings[J]. Communications in Algebra, 2019, 47(3):1215-1221.
[8] POSNER E. Derivations in prime rings[J]. Proc American Mathematical Society Journal, 1957, 8(6):1093-1100.
[1] YANG Liu, MA Jing. Armendariz property for a group ring over the Hamiltons quaternion ring [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(1): 1-4.
[2] FU Li-na, ZHANG Jian-hua. Characterization of Lie centralizers on B(X) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 10-14.
[3] ZHANG Fang-juan. Nonlinear Lie centralizers of generalized matrix algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 10-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!