JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (11): 15-26.doi: 10.6040/j.issn.1671-9352.0.2022.317

Previous Articles     Next Articles

Parameter estimation for the sub-fractional Vasicek model based on discrete observation

Cuiyun ZHANG(),Jingjun GUO*(),Aiqin MA   

  1. School of Statistics, Lanzhou University of Finance and Economics, Lanzhou 730020, Gansu, China
  • Received:2022-05-30 Online:2023-11-20 Published:2023-11-07
  • Contact: Jingjun GUO E-mail:nwnu_zhangcuiyun@163.com;guojj@lzufe.edu.cn

Abstract:

The problem of statistical analysis of the Vasicek model driven by sub-fractional Brownian motion is mainly investigated. Firstly, based on discrete observations, the estimation of drift parameters μ and θ in Vasicek model are given by the least square estimation method. Secondly, for the θ≠0 and θ=0 cases, the consistency and the asymptotic distribution of the estimators are obtained, respectively. Finally, simulations are performed with the Monte Carlo method to demonstrate the unbiasedness and validity of the estimates.

Key words: sub-fractional Brownian motion, least squares estimation, Vasicek model, consistency, asymptotic distribution

CLC Number: 

  • O212.1

Table 1

Mean value and standard deviation of the estimator $\hat{\mu}$"

H μ=0.6 μ=1 μ=1.5 μ=1.75
$\hat{\mu}$的均值 $\hat{\mu}$的标准差 $\hat{\mu}$的均值 $\hat{\mu}$的标准差 $\hat{\mu}$的均值 $\hat{\mu}$的标准差 $\hat{\mu}$的均值 $\hat{\mu}$的标准差
0.65 0.599 9 8.69×10-5 0.999 9 8.71×10-5 1.499 9 8.90×10-5 1.750 0 8.14×10-5
0.75 0.599 9 3.95×10-5 1.000 0 3.64×10-5 1.500 0 3.58×10-5 1.749 9 3.62×10-5
0.85 0.599 9 1.41×10-5 0.999 9 1.50×10-5 1.499 9 1.57×10-5 1.749 9 1.49×10-5

Table 2

Mean value and standard deviation of the estimator $\hat{\theta}$"

Hθ=-0.7θ=-0.8θ=-0.9θ=-0.95
$\hat{\theta}$的均值 $\hat{\theta}$的标准差 $\hat{\theta}$的均值 $\hat{\theta}$的标准差 $\hat{\theta}$的均值 $\hat{\theta}$的标准差 $\hat{\theta}$的均值 $\hat{\theta}$的标准差
0.55 -0.699 9 9.03×10-6 -0.799 9 9.16×10-6 -0.900 0 9.26×10-6 -0.949 9 8.86×10-6
0.65 -0.699 9 6.84×10-6 -0.800 0 6.33×10-6 -0.899 9 6.77×10-6 -0.949 9 7.06×10-6
0.75 -0.700 0 4.43×10-6 -0.800 0 4.89×10-6 -0.899 9 4.53×10-6 -0.949 9 4.68×10-6
1 VASICEK O . An equilibrium characterization of the term structure[J]. Journal of Financial Economics, 1977, 5 (2): 177- 188.
doi: 10.1016/0304-405X(77)90016-2
2 PRAKASA-RAO B L S . Statistical inference from sampled data for stochastic processes[J]. Contemp Math, 1988, 80, 249- 284.
3 VALDIVIESO L , SCHOUTENS W , TUERLINCKX F . Maximum likelihood estimation inprocesses of Ornstein-Uhlenbeck type[J]. Statistical Inference for Stochastic Processes, 2009, 12 (1): 1- 19.
doi: 10.1007/s11203-008-9021-8
4 ZHANG Pu , XIAO Weilin , ZHANG Xili , et al. Parameter identification for fractional Ornstein-Uhlenbeck processes based on discrete observation[J]. Economic Modelling, 2014, 36, 198- 203.
doi: 10.1016/j.econmod.2013.09.004
5 ZHANG Shibin , ZHANG Xinsheng . A least squares estimator for discretely observed Ornstein-Uhlenbeck processes driven by symmetric α-stable motions[J]. Annals of the Institute of Statistical Mathematics, 2013, 65 (1): 89- 103.
doi: 10.1007/s10463-012-0362-0
6 SHEN Guangjun , WANG Qinbo , YIN Xiuwei . Parameter estimation for the discretely observed Vasicek model with small fractional Lévy noise[J]. Acta Mathematica Sinica (English Series), 2020, 36 (4): 443- 461.
doi: 10.1007/s10114-020-9121-y
7 BOJDECKI T , GOROSTIZA L G , TALARCAYK A . Sub-fractional Brownian motion and its relation to occupation times[J]. Statistics & Probability Letters, 2004, 69 (4): 405- 419.
8 MENDY I . Parametric estimation for sub-fractional Ornstein-Uhlenbeck process[J]. Journal of Statistical Planning and Inference, 2013, 143 (4): 663- 674.
doi: 10.1016/j.jspi.2012.10.013
9 KUANG Nenghui , XIE Huantian . Maximum likelihood estimator for the sub-fractional Brownian motion approximated by a random walk[J]. Annals of the Institute of Statistical Mathematics, 2015, 67 (1): 75- 91.
doi: 10.1007/s10463-013-0439-4
10 LI Shengfeng , DONG Yi . Parametric estimation in the Vasicek-type model driven by sub-fractional Brownian motion[J]. Algorithms, 2018, 11 (12): 197- 215.
doi: 10.3390/a11120197
11 XIAO Weilin , ZHANG Xili , ZUO Ying . Least squares estimation for the drift parameters in the sub-fractional Vasicek processes[J]. Journal of Statistical Planning and Inference, 2018, 197, 141- 155.
doi: 10.1016/j.jspi.2018.01.003
12 申广君, 何坤, 闫理坦. 次分数布朗运动的几点注记[J]. 山东大学学报(理学版), 2011, 46 (3): 102- 108.
SHEN Guangjun , HE Kun , YAN Litan . Remarks on sub-fractional Brownian motion[J]. Journal of Shandong University (Natural Science), 2011, 46 (3): 102- 108.
13 TUDOR C . Some properties of the sub-fractional Brownian motion[J]. Stochastics An International Journal of Probability and Stochastic Processes, 2007, 79 (5): 431- 448.
doi: 10.1080/17442500601100331
[1] FENG Xue, GENG Sheng-ling, LI Yong-ming. Weighted hesitation fuzzy preference relation and its application in group decision making [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(3): 39-47.
[2] Shimiao ZHANG,Yan LYU. Parameter estimation for competitive Lotka-Volterra model with Lévy noise [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(10): 24-31.
[3] HUANG Qin-mei, KOU Jun-ke. Consistency of wavelet estimator for regression model with mixed noise [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(1): 25-30.
[4] AN Xiang, GUO Jing-jun. Pricing and simulation of lookback options under the mixed sub-fractional jump-diffusion model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(4): 100-110.
[5] CHANG Li-na, WEI Ling. Rules acquisition based on OE-approximate concept lattice in incomplete formal decision contexts [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(11): 31-37.
[6] PENG Bo, GUO Jing-jun. Asset pricing and simulation under the environment of jumping and mixed Gaussian process [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(5): 105-113.
[7] LI Yong-ming, NIE Cai-ling, LIU Chao, GUO Jian-hua. Consistency of estimator of nonparametric regression function for arrays of rowwise NSD [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 69-74.
[8] HU Xue-ping, ZHANG Hong-mei. Convergence properties of the kernel-type density estimator under WOD dependent samples [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 21-25.
[9] LI Yong-ming, DENG Shao-jian, JIANG Wei-hong. Consistencies of recursive estimator of a probability density for extended negatively dependent samples [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 54-59.
[10] WU Da-yong, LI Feng. Maximum empirical likelihood estimation in nonlinear semiparametric regression models with missing data [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(04): 20-23.
[11] WU Xin-ye, WU Qun-ying. The r-th rate of consistency in kernel density estimation for #br# φ-mixed random censored samples [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(1): 105-110.
[12] LI Yong-ming1, DING Li-wang2. The r-th moment consistency of estimators for a semi-parametric regression model for positively associated errors [J]. J4, 2013, 48(1): 83-88.
[13] YE Cai-yuan, WU Qun-ying*, WU Xin-ye. Consistency NA samples kernel density estimation for censored data [J]. J4, 2013, 48(09): 40-45.
[14] SHEN Guang-jun 1,2, HE Kun 3, YAN Li-tan 3. Remarks on sub-fractional Brownian motion [J]. J4, 2011, 46(3): 102-108.
[15] WANG Ji-rong1, CAO Xiao-hong2, LIU Jun-ying2. Operators with consistency in Fredholm and Weyl′s theorem [J]. J4, 2011, 46(1): 87-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] MAO Ai-qin1,2, YANG Ming-jun2, 3, YU Hai-yun2, ZHANG Pin1, PAN Ren-ming1*. Study on thermal decomposition mechanism of  pentafluoroethane fire extinguishing agent[J]. J4, 2013, 48(1): 51 -55 .
[2] CHEN Ya-juan1,2, SHANG Xin-chun1*. Dynamical formation and growth of cavity in a heated viscoelastic sphere[J]. J4, 2013, 48(4): 72 -76 .
[3] XU Qiu-yan .

A class of parallel finite difference methods for solving a two-dimensional diffusion equation

[J]. J4, 2008, 43(8): 1 -05 .
[4] YANG Zhao-qiang. A kind of European lookback option pricing model under fractional  jump-diffusion mixed fractional Brownian motion[J]. J4, 2013, 48(6): 67 -74 .
[5] WANG Ting . [J]. J4, 2006, 41(5): 20 -25 .
[6] CAO Yin-hong,GAO Rui . A unicity theorem on the entire function and its linear differential polynomials[J]. J4, 2007, 42(12): 69 -72 .
[7] GAO Yun-peng,YAN Jin . Pathfactors with prescribed length in clawfree graphs[J]. J4, 2006, 41(5): 51 -54 .
[8] QU Wen,SU Ji-xin*,PAN Qi,NIE Yu-lun . Synthesis and acid catalytic activity of HSO3-functionalized silica[J]. J4, 2007, 42(11): 11 -14 .
[9] QIU Tao-rong, WANG Lu, XIONG Shu-jie, BAI Xiao-ming. A granular computing approach for knowledge hiding[J]. J4, 2010, 45(7): 60 -64 .
[10] XUE Qiu-fang1,2, GAO Xing-bao1*, LIU Xiao-guang1. Several equivalent conditions for H-matrix based on the extrapolated GaussSeidel iterative method[J]. J4, 2013, 48(4): 65 -71 .